DOI QR코드

DOI QR Code

Seismic Analysis for Multi-pile Concrete Foundation in 5MW Class Offshore Wind Turbine

5MW 해상풍력타워를 위한 콘크리트 지지구조물의 내진해석

  • Kim, Woo Seok (Department of Civil Engineering, Chungnam National University) ;
  • Jeong, Yuseok (Department of Civil Engineering, Chungnam National University) ;
  • Kim, Kidu (Department of Civil and Environmental System Engineering) ;
  • Kim, Kyeong Jin (Department of Civil and Environmental Engineering) ;
  • Lee, Jae Ha (Department of Civil Engineering)
  • 김우석 (충남대학교 토목공학과) ;
  • 정유석 (충남대학교 토목공학과) ;
  • 김기두 (건국대학교 사회시스템공학과) ;
  • 김경진 (한국해양대학교 토목환경공학과) ;
  • 이재하 (한국해양대학교 건설공학과)
  • Received : 2015.10.13
  • Accepted : 2016.02.22
  • Published : 2016.06.30

Abstract

Recently, Wind-turbine electronic generator become popular. Wind-Turbine is free to cost for purchase and noise problem. For this reason, trend is shifting from Wind-turbine on land to offshore. Research and Development for offshore Wind-turbine has been conducted by various research institution. However, There is no solid design code for offshore Wind-turbine even in domestic as well as foreign. In this paper, conduct seismic analysis and compare results using design codes Korea Bridge Design Codes, Korea Harbor and Marina Design Codes, and DNV OS. Time-History analysis conducted for checking time dependent effect. The Added-Mass Method applied to consider water-structure effects and compared for w/ water and w/o water condition.

최근 신재생 에너지 중 하나인 풍력발전에 대한 관심이 증가하고 있다. 풍력발전은 토지구입비, 소음문제에 자유로운 해상풍력으로 추세가 옮겨가고 있으며 이를 위한 연구개발이 전 세계적으로 활발히 이루어지고 있다. 그러나 해상에 위치한 풍력발전을 위한 설계기준은 국내, 국외 모두 없는 실정이다. 이 점을 고려하여 국내, 국외의 구조설계기준인 도로교 설계기준, 항만 및 어항 설계기준, DNV OS를 참고하여 다중 파일기초 콘크리트 지지구조물(MCF)의 내진해석을 수행하여 결과를 비교하였다. 또한 시간에 의한 효과를 확인하기 위하여 시간이력 해석 또한 수행되었다. 부가질량법(Added-mass method)을 사용하여 물과 구조의 상호작용을 고려하였고 물의 유무에 따라 구조물의 반응을 비교하였다.

Keywords

References

  1. Lee, J.H., Lee, S.B., Kim, J.K. (2012) Earthquake Response Analysis of an Offshore Wind Turbine Considering Fluid-Structure-Soil Interaction, J. Earthq. Eng. Soc. Korea, 16(3), pp.1-12. https://doi.org/10.5000/EESK.2012.16.3.001
  2. Kim, J.-S., Song, C.Y., Lee, D.Y. (2012) Estimation of Hydrodynamic on Fixed Offshore Wind Turbine Substructure Considering Flexible Effect, Autumn Conference of The Korean Society for Marine Environment and Energy in Autumn of 2012, The Korean Society for Marine Environment and Energy, pp.385-389.
  3. Kim, H.G., Kim, B.J., Kim, K.D. (2013) New Development of Hybrid Concrete Support Structure with Driven Piles for Offshore Wind Turbines, J. Korean Soc. Steel Construct., 25(3), pp.307-320. https://doi.org/10.7781/kjoss.2013.25.3.307
  4. Ministry of Land, Transport and Maritime Affaires of South Korea (2012) Korea Bridge Design Code (Limit State Design).
  5. Ministry of Maritime Affairs and Fisheries (2005) Harbor and Marina Design Code
  6. Anil, K. C. (2004) Dynamics of Structures 2th Edition, Pearson Educations.
  7. DNV (2012) BOERE: Comparison of API, ISO, and NORSOK Offshore Structural Standards
  8. Jonkman, J., Butterfield S., Musial, W., Scott, G. (2009) Definition of a 5-MW Reference Wind Turbine for Offshore System Development, National Renewable Energy Laboratory, NREL/TP-500-38060.
  9. Micheal, H., Thomas, M., Gerad, K. (1997) Modal Analysis of an Existing Offshore Platform, Eng. Struct., 19(6), pp 487-498. https://doi.org/10.1016/S0141-0296(96)00102-2
  10. MIDAS Information Technology (2012) MIDAS/CIVIL 2012 Analysis Reference
  11. Vries, de W.E. (2007) Upwind WP4 D4.2.1 Assessment of Bottom-mounted Support Structure Types, Deliverable report, Project UpWind, Riso National Laboratory-DTU, Denmark.
  12. Yang, W., Li, Q. (2013) A New Added Mass Method for Fluid-Structure Interaction Analysis of Deep-water Bridge, KSCE J. Civil Eng.,17(6), pp.1413-1424. https://doi.org/10.1007/s12205-013-0134-2

Cited by

  1. Three-dimensional Analysis of Prestressed Concrete Offshore Wind Turbine Structure Under Environmental and 5-MW Turbine Loads vol.17, pp.4, 2018, https://doi.org/10.1007/s11804-018-0021-9