DOI QR코드

DOI QR Code

Application of the LISFLOOD-FP model for flood stage prediction on the lower mankyung river

만경강 하류 홍수위 예측을 위한 LISFLOOD-FP 모형의 적용성 검토

  • Jeon, Ho-Seong (Korea Institute of Civil engineering and building Technology) ;
  • Kim, Ji-sung (Korea Institute of Civil engineering and building Technology) ;
  • Kim, Kyu-ho (Korea Institute of Civil engineering and building Technology) ;
  • Hong, il (Korea Institute of Civil engineering and building Technology)
  • 전호성 (한국건설기술연구원 수자원.하천연구소) ;
  • 김지성 (한국건설기술연구원 수자원.하천연구소) ;
  • 김규호 (한국건설기술연구원 수자원.하천연구소) ;
  • 홍일 (한국건설기술연구원 수자원.하천연구소)
  • Received : 2016.01.15
  • Accepted : 2016.03.17
  • Published : 2016.06.30

Abstract

LISFLOOD-FP model in which channel flows are resolved separately from the floodplain flows using either a kinematic or diffusive wave approximation has been used to analyze flooding behavior on the lower Mankyung River influenced by backwater. A calibration and validation process was applied using the previous flood events to assess the model performance. Sensitivity analysis was conducted for main calibrated parameters, such as Manning roughness coefficient and downstream boundary condition. Also, we examined the effect of warm-up for the initial conditions. The results show that the computed hydrograph is in good agreement with measured data on the study reach, even though it was a hydrologic kinematic wave model. The sensitive analysis show that the difference between the computed results may be greater depending on the used calibrated parameters and that the sufficient calibration/validation process against various flood events is necessary. If the flood inundation simulation is performed using the validated model, it is expected to be able to contribute about river planning and policy decision-making for flood damage reduction.

홍수범람모의에 주로 활용되는 LISFLOOD-FP 모형은 하도에서 1차원 운동파 방정식을 이용하고, 상대적으로 평평하여 흐름이 확산되는 홍수터에서 단순화된 2차원 확산파 방정식을 이용하여 흐름을 해석한다. 본 연구에서는 분포형 수문모형인 LISFLOOD-FP 모형의 하천홍수위 예측 적용성을 검토하기 위하여 배수영향을 받는 만경강 하류구간에서 기 발생한 홍수사상을 대상으로 모형을 보정하고 검증하였다. 모형의 주요 매개변수인 Manning 조도계수와 하류단 경계조건의 민감도를 분석하였고, 초기조건 영향을 검토하기 위하여 warm-up 유무에 따른 해석결과를 비교하였다. 그 결과, 운동파 모형임에도 불구하고 배수영향을 받는 만경강 하류구간의 홍수위를 비교적 잘 재현하는 것을 확인하였고, 민감도 분석은 실제 홍수사상의 적용 시 여러 가지 매개변수와 경계 조건에 의해 홍수위 값이 상이한 결과를 나타났다. 이러한 결과를 바탕으로 운동파 수문모형의 적용시 홍수위 해석에 대한 충분한 검증 및 검토가 필요하다고 사료되며, 검증된 모형을 바탕으로 다양한 유역의 홍수범람모의에 적용이 된다면 향후 홍수피해 저감을 위한 정책적인 의사결정에 기여할 수 있을 것으로 판단된다.

Keywords

References

  1. ASCE (1996). River Hydraulics, Technical Engineering and Design Guides as Adapted from the U.S. Army Corps of Engineers, No. 18, New York.
  2. Bates, P.D., and De Roo, A.P.J. (2000). "A simple raster-based model for flood inundation simulation." Journal of Hydrology, Vol. 236, No. 1-2, pp. 54-77. https://doi.org/10.1016/S0022-1694(00)00278-X
  3. Beffa, C., and Connell, R. (2001). "Two-Dimensional Flood Plain Flow. I: Model Description." Hydrologic Engineering, Vol. 6, No. 5, pp. 397-405. https://doi.org/10.1061/(ASCE)1084-0699(2001)6:5(397)
  4. Choi, C.K., Choi, Y.S., and Kim, K.T. (2013). "Analysis of Flood Inundation Using LiDAR and LISFLOOD Model." Journal of the Korean Association of Geographic Information Studies, Vol. 16, No. 4, pp. 1-15 (in Korean). https://doi.org/10.11108/kagis.2013.16.4.001
  5. Choi, C.K., Choi, Y.S., and Kim, K.T. (2014). "Comparison and Evaluation of the Inundation Areas by Levee Breaching using LISFLOOD." Journal of Wetlands Resreach, Vol. 16, No. 3, pp. 383-392 (in Korean). https://doi.org/10.17663/JWR.2014.16.3.383
  6. Coulthard, T.J., Neal, J., Bates, P.D., Ramirez, J., de Almeida, G., and Hancock, G.R. (2013). "Integrating the LISFLOOD-FP 2D hydrodynamic model with the CAESAR model:Implications for modelling landscape evolution." Earth Surface Processes and Landforms, Vol. 38, No. 15, pp. 1897-1906. https://doi.org/10.1002/esp.3478
  7. Dawson, R.J., Hall, J.W., Bates, P.D., Nichols, R.J. (2005). "Quantified analysis of the probability of flooding in the Thames Estuary under imaginable worst-case sea level rise scenarios." International Journal of Water Resources Development, Vol. 21, No. 4, pp. 577-591. https://doi.org/10.1080/07900620500258380
  8. Hall, J.W., Sayers, P.B., Dawson, R.J. (2005). "National-scale assessment of current and future flood risk in England and Wales." Natural Hazards, Vol. 36, No. 1-2, pp. 147-164. https://doi.org/10.1007/s11069-004-4546-7
  9. Horritt, M., and Bates, P.D. (2001). "Effects of Spatial Resolution on a Raster Based Model of Flood flow." Journal of Hydrology, Vol. 253, pp. 239-249. https://doi.org/10.1016/S0022-1694(01)00490-5
  10. Kang, H.S., Cho, S.Y., and Song, Y.I. (2011). "A study on flood storage plans of farmlands for extreme flood reduction." Journal of Korea Water Resources Association, Vol. 44, No. 10, pp. 787-795 (in Korean). https://doi.org/10.3741/JKWRA.2011.44.10.787
  11. Kim, B.H., Choi, S.Y., and Han, K.Y. (2011). "An Analysis Method of 1D Hydrodynamic Model Based on GIS for Flood Inundation Mapping." Journal of Korean Society of Hazard Mitigation, Vol. 11, No. 6, pp. 227-235 (in Korean). https://doi.org/10.9798/KOSHAM.2011.11.6.227
  12. Liu, Y., Gebremeskel, S., De Smedt, F., Hoffmann, L., and Pfister, L. (2003). "A Diffusive Transport Approach for Flow Routing in GIS-Based Flood Modelling." Journal of Hydrology, Vol. 283, pp. 91-106. https://doi.org/10.1016/S0022-1694(03)00242-7
  13. Maugeri, A. (2012). "Capabilities of a coupled 1D/2D model for flood inundation simulation." Columbia Water Center summer internship.
  14. Merwade, V., Cook, A., and Coonrod, J. (2008). "GIS techniques for creating river terrain models for hydrodynamic modeling and flood inundation mapping." Environmental Modelling & Software, Vol. 23, No. 10, pp. 1300-1311. https://doi.org/10.1016/j.envsoft.2008.03.005
  15. MLTMA (2012). Schematic Plan for Mankyung River. Ministry of Land Transport and Maritime Affairs, Iksan, Korea. (in Korean)
  16. Neal, J., Schumann, G., Fewtrell, T., Budimir, M., Bates, P., and Mason, D. (2011). "Evaluating a new LISFLOOD‐FP formulation with data from the summer 2007 floods in Tewkesbury, UK." Journal of Flood Risk Management, Vol. 4, No. 2, pp. 88-95. https://doi.org/10.1111/j.1753-318X.2011.01093.x
  17. Patro, S., Chatterjee, C., Singh, R., and Raghuwanshi, N. S. (2009). "Hydrodynamic modelling of a large flood‐prone river system in India with limited data." Hydrological Processes, Vol. 23, No. 19, pp. 2774-2791. https://doi.org/10.1002/hyp.7375
  18. Singh, V.P. (1996). Kinematic wave modeling in water resources, surface-water hydrology. John Wiley & Sons.
  19. Tate, E.C., Maidment, D.R., Olivera, F., and Anderson, D.J. (2002). "Creating a terrain model for floodplain mapping." Journal of Hydrologic Engineering, Vol. 7, No. 2, pp. 100-108. https://doi.org/10.1061/(ASCE)1084-0699(2002)7:2(100)
  20. Tsai, C.W. (2005). "Flood routing in mild-sloped rivers-wave characteristics and downstream backwater effect." Journal of Hydrology, Vol. 308, No. 1, pp. 151-167. https://doi.org/10.1016/j.jhydrol.2004.10.027
  21. Wenger, C. (2015). "Better use and management of levees:reducing flood risk in a changing climate." Environmental Reviews, Vol. 23, No. 999, pp. 1-16. https://doi.org/10.1139/er-2014-0039
  22. Wheater, H., and Evans, E. (2009). "Land use, water management and future flood risk." Land Use Policy, Vol. 26, pp. 251-264. https://doi.org/10.1016/j.landusepol.2009.08.019
  23. WMO (2014). Atlas of Mortality and Economic Losses from Weather, Climate and Water Extremes (1970-2012), WMO-No. 1123.
  24. Woo, H.S., Kim, W. and Ji, U. (2015). River hydraulics, Cheong moon gak (in Korean).