References
- F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ., 81 (1973), 637-659. https://doi.org/10.1086/260062
- C. Wang, S. Zhou, and J. Yang, The pricing of vulnerable options in a fractional Brownian motion environment, Discrete Dyn. Nat. Soc., 2015 (2015), 579213.
- D.J. Duffy, Finite Difference Methods in Financial Engineering, John Wiley & Sons, New York, NY, USA, (2006).
- H. Han and X. Wu, A fast numerical method for the Black-Scholes equation of American options, SIAM J. Numer. Anal., 41(6) (2003), 2081-2095. https://doi.org/10.1137/S0036142901390238
- D. Jeong, T. Ha, M. Kim, J. Shin, I.H. Yoon, and J. Kim, An adaptive finite difference method using far-field boundary conditions for the Black-Scholes equation, B. Korean Math. Soc., 51(4) (2014), 1087-1100. https://doi.org/10.4134/BKMS.2014.51.4.1087
- D. Jeong and J. Kim, A comparison study of ADI and operator splitting methods on option pricing models, J. Comput. Appl. Math., 247 (2013), 162-171. https://doi.org/10.1016/j.cam.2013.01.008
- D. Jeong, J. Kim, and I.S. Wee, An accurate and efficient numerical method for Black-Scholes equations, Commun. Korean Math. Soc., 24(4) (2009), 617-628. https://doi.org/10.4134/CKMS.2009.24.4.617
- D. Jeong, I.S.Wee, and J. Kim, An operator splitting method for pricing the ELS option, J. KSIAM, 14 (2010), 175-187.
- R. Seydel, Tools for Computational Finance, Springer, Berlin, Germany, (2003).
- D. Tavella and C. Randall, Pricing Financial Instruments: The Finite Difference Method, John Wiley & Sons, New York, NY, USA, (2000).
- J. Topper, Financial Engineering with Finite Elements, John Wiley & Sons, Chichester, UK, (2005).
- P. Wilmott, J. Dewynne, and S. Howison, Option Pricing: Mathematical Models and Computation, Oxford Financial Press, Oxford, UK, (1993).
- D. Jeong, S. Seo, H. Hwang, D. Lee, Y. Choi, and J. Kim, Accuracy, robustness, and efficiency of the linear boundary condition for the Black-Scholes equations, Discrete Dyn. Nat. Soc., 2015 (2015) 359028.
- Y. Achdou and N. Tchou, Variational analysis for the Black and Scholes equation with stochastic volatility, ESAIM-Math. Model. Num., 36)(3) (2002), 373-395. https://doi.org/10.1051/m2an:2002018
- A. Ern, S. Villeneuve, and A. Zanette, Adaptive finite element methods for local volatility European option pricing, Int. J. Theor. Appl. Financ., 7(6) (2004), 659-684. https://doi.org/10.1142/S0219024904002669
- N. Rambeerich, D.Y. Tangman, M.R. Lollchund, and M. Bhuruth, High-order computational methods for option valuation under multifactor models, Eur. J. Oper. Res., 224(1) (2013), 219-226. https://doi.org/10.1016/j.ejor.2012.07.023
- P.A. Forsyth and K.R. Vetzal, Quadratic convergence for valuing American options using a penalty method, SIAM J. Sci. Comput., 23(6) (2002), 2095-2122. https://doi.org/10.1137/S1064827500382324
- S. Wang, A novel fitted finite volume method for the Black-Scholes equation governing option pricing, IMA J. Numer. Anal., 24(4) (2004), 699-720. https://doi.org/10.1093/imanum/24.4.699
- S. Wang, S. Zhang, and Z. Fang, A super convergent fitted finite volume method for Black-Scholes equations governing European and American option valuation, Numer. Meth. Part. D. E., 31(4) (2015), 1190-1208. https://doi.org/10.1002/num.21941
- P. Carr and D.B. Madan, Option valuation using the fast Fourier transform, J. Comput. Financ., 2(4) (1999), 61-73. https://doi.org/10.21314/JCF.1999.043
- A. Cerny, Introduction to fast Fourier transform in finance, J. Deriv., 12(1) (2004), 73-88. https://doi.org/10.3905/jod.2004.434538
- M.A.H. Dempster and S.S.G. Hong, Spread option valuation and the fast Fourier transform, Springer Finance, Springer Finance, Springer, Berlin, (2002), 203-220.
- C.C. Hsu, S.K. Lin, and T.F. Chen, Pricing and hedging European energy derivatives: a case study of WTI oil options, Asia-Pac. J. Financ. St., 43(3) (2014), 317-355. https://doi.org/10.1111/ajfs.12050
- T. Sakuma and Y. Yamada, Application of homotopy analysis method to option pricing under Levy processes, Asia-Pac. Financ. Mark., 21(1) (2014), 1-14. https://doi.org/10.1007/s10690-013-9175-2
- E.G. Haug, The Complete Guide to Option Pricing Formulas, New York, McGraw-Hill, (1998).
- M. Rubinstein, One for another, Risk, 4(7) (1991), 30-32.
- Korea Exchange, Historical KOSPI 200 index option price, http://www.krx.co.kr/m3/m32/m321/JHPKOR0300201.jsp, (2015).