References
- C. Bernardi and R. Verfurth, Adaptive finite element methods for elliptic equations with non-smooth coefficients, Numer. Math., 85 (2000), 579-608. https://doi.org/10.1007/PL00005393
- M. Petzoldt, A posteriori error estimators for elliptic equations with discontinuous coefficients, Adv. Comput. Math., 16 (2002), 47-75. https://doi.org/10.1023/A:1014221125034
- C. Carstensen and R. Verfurth, Edge residuals dominate a posteriori error estimates for low order finite element methods, SIAM J. Numer. Anal., 36 (1999), 1571-1587. https://doi.org/10.1137/S003614299732334X
- Z. Cai and S. Zhang, Recovery-based error estimator for interface problems: conforming linear elements, SIAM J. Numer. Anal., 47 (2009), 2132-2156. https://doi.org/10.1137/080717407
- Z. Cai and S. Zhang, Recovery-based error estimators for interface problems: mixed and nonconforming finite elements, SIAM J. Numer. Anal., 48 (2010), 30-52. https://doi.org/10.1137/080722631
- O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. Numer. Methods Engrg., 24 (1987), 337-357. https://doi.org/10.1002/nme.1620240206
- C. Carstensen and S. Bartels, Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM, Math. Comp., 71 (2002), 945-969. https://doi.org/10.1090/S0025-5718-02-01402-3
- G. Goodsell and J. R. Whiteman, A unified treatment of superconvergent recovered gradient functions for piecewise linear finite element approximations, Internat. J. Numer. Methods Engrg., 27 (1989), 469-481. https://doi.org/10.1002/nme.1620270304
- N. Levine, Superconvergent recovery of the gradient from piecewise linear finite-element approximations, IMA J. Numer. Anal., 5 (1985), 407-427. https://doi.org/10.1093/imanum/5.4.407
- J. H. Brandts, Superconvergence and a posteriori error estimation for triangular mixed finite elements, Numer. Math., 68 (1994), 311-324. https://doi.org/10.1007/s002110050064
- J. Hu and R. Ma, Superconvergence of both the Crouzeix-Raviart and Morley elements, Numer. Math., 132 (2016), 491-509. https://doi.org/10.1007/s00211-015-0729-2
- K. Y. Kim, A posteriori error analysis for locally conservative mixed methods, Math. Comp., 76 (2007), 43-66. https://doi.org/10.1090/S0025-5718-06-01903-X
- B. I. Wohlmuth and R. H. W. Hoppe, A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas elements, Math. Comp., 68 (1999), 1347-1378. https://doi.org/10.1090/S0025-5718-99-01125-4
- R. B. Kellogg, On the Poisson equation with intersecting interfaces, Appl. Anal., 4 (1974), 101-129. https://doi.org/10.1080/00036817408839086