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GENERALIZED WAVELETS AND THE GENERALIZED
WAVELET TRANSFORM ON R? FOR THE
HECKMAN-OPDAM THEORY

AMINA HASSINI, RAYAANE MAALAOUI, AND KHALIFA TRIMECHE

ABSTRACT. By using the Heckman-Opdam theory on R? given in
[20], we define and study in this paper, the generalized wavelets on
R? and the generalized wavelet transform on R? and we establish
their properties. Next, we prove for the generalized wavelet trans-
form Plancherel and inversion formulas.

1. Introduction

Fourier analysis is one of the most important tools used by math-
ematicians and physicists. Besides, in the nineteenth century, Fourier
analysis was the only technique for the decomposition of a signal and its
reconstruction without loss of information. Unfortunately, it provides a
frequency analysis but does not allow the temporal localization of abrupt
changes.

A procedure for analyzing a frequency that depends on the time,
called continuous wavelet transform, was discovered by the Physicist
George Zweig in 1975 while studying the reaction of the ear to sound.
Notable contribution to the continuous wavelet transform studies can be
attributed to Pierre Goupillaud, Grossmann and Morlet’s formulation of
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what this transform is now known (see [5][6]). The basic idea is to re-
place in usual Fourier transform, the function analyzed by the product
of this function by a regular function, called a wavelet (see [11]). If we
denote by ¢ this wavelet on R? of L?-norm with respect to the Lebesgue
measure, equal to 1, for a scale a > 0 and position b € R?, the contin-
uous wavelet transform for a function f, is expressed by the following
integral (see [11]):

&/ t) = [ f@)ga@dn, (a.b) €0 +oolxR"
R
where g, is the wavelet defined by

ga,b(x) = 7?)9a<x)7 WS Rda

with g, the function given by

() = 79 (>

a)'
It satisfies
‘F(gzz)(/\) = f(g)(a)\), A E Rda
where F is the classical Fourier transform on R? and 7,, b € R?, the
classical translation operator defined by

Tog(x) = g(b— 1), z€R%

To recover the original signal f(x), the inverse of the continuous wavelet
transform ®, can be exploited:

10 = [ ([ a0 hmi) 2 vers

where C,, is a constant given for almost all A € R?, by

G= [ I,

and satisfies
0<Cy < +o0.

One of the aims of the continuous wavelet transform, is to provide
an easily interpretable visual representation of signal. Moreover, this
transform can be applied to wide scientific research areas ranging from
signal analysis in geophysics and acoustics, to quantum theory and pure
Mathematics (see [1][11]).

Next, the theory of wavelets and continuous wavelet transform has
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been extended to the harmonic analysis associated with the Dunkl op-
erators on R? (see [7][9][15]) and on hypergroups, in particular to the
Chébli-Trimeche hypergroups (see [2][14]).

As nowadays the harmonic analysis associated to the Cherednik op-
erators and the Heckman-Opdam theory has known remarkable devel-
opment, it is naturel question to ask whether there exists the equivalent
of the theory of wavelets and continuous wavelet transform relating to
this harmonic analysis.

In this paper, we study generalized wavelets and generalized contin-
uous wavelet transform associated to the Heckman-Opdam theory on
W-invariant functions on R?. To achieve this, we consider the Chered-
nik operators 7,7 = 1,2,...,d, on R? associated to a root system R, a
reflection group W and a non negative multiplicity function k. Thanks
to these operators, Heckman and Opdam have developed a theory gen-
eralizing the harmonic analysis on symmetric spaces (see [8][12]).

Next, we introduce the Heckman-Opdam hypergeometric function F), A €
C?, given by

1
Vo eR!, Fi(r)=— Y Gi(ws),

where G, X\ € C%, is the unique solution of the differential-difference
system

T;Ga(z) =1i\Ga(z), j=1,2,...,d,x € RY,
GA\(0) =1

By using the function F), we define the hypergeometric Fourier trans-
form H"W for regular W-invariant function f on R by

HYNW = [ @ Pl Aua)dn, A€ R,
Rd
where Ay is a weight function, and the hypergeometric translation op-
erator TV, x € R by
HUT ()X = @MY (V) AeR?

We recall the main results of the harmonic analysis associated to the
Heckman-Opdam theory on W-invariant functions (see [20]). With the
aid of these results, we define and study the generalized wavelet trans-
form ®,(f) given for a regular W-invariant function f on R¢ by

O,(f)(a,b) = /Rd f(@)gap(x)Ak(z)dz, (a,b) € ]0, +-o00[xRY,
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where g, is the generalized wavelet defined, for a > 0 and b € R, by
Jap(t) = T, ga(2), @ € R,
with g, the function given by
HY (9)(N) = H" (9)(a)), X eR?

Next, we prove for the transform ®, Plancherel and inversion formulas.

2. The Cherednik operators and their eigenfunctions
(see [12][13])

We consider R? with the standard basis {e;,i = 1,2,...,d} and the
inner product (.,.) for which this basis is orthonormal. We extend this
inner product to a complex bilinear form on C¢.

2.1. The root system, the multiplicity function and the Chered-
nik operators.

Let a € RN\{0} and & =

;. We denote by
ler]

ro(r) =z — (&, 2)a, = €R?

the reflection in the hyperplan H, C R¢ orthogonal to a.

A finite set R C R4\ {0} is called a root system if 7,R = R, for all
a € R. For a given root system R the reflections r,,a € R, generate
a finite group W C O(d), called the reflection group associated with R.
For a given 3 € R\ U,er Hy, we fix the positive subsystem R, = {a €
R,{a, 5) > 0}, then for each a € R either « € Ry or —a € R,. We
denote by RY the set of positive indivisible roots. Let

at={zeR VacR,(az)>0}

be the positive Weyl chamber. We denote by a* its closure. Let also
]R;feg = RN\Uqer H,, be the set of regular elements in R%.

A function k : R — [0, 4o00[ on the root system R is called a multi-
plicity function if it is invariant under the action of the reflection group

W. We introduce the index

¥=71R)= ) ko). (2.1)

aER 4
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Moreover, let A, be the weight function

e o
Vo eR!, Az) = ][] |251nh(§,x>|2k( ),

aER 4+

which is W-invariant.

The Cherednik operators T}, j = 1,2, ...,d, on R? associated with the
reflection group W and the multiplicity function k, are defined for f of
class C' on R? and z € R? by

reg

L) = 2 fla)+ 3 Y0y~ fra)} — pif @),

:G_xj 1 —e (e

where

p; = % Z k(a)a?, and o/ = (a,¢;).
aER 4
In the case k(o) = 0, for all &« € R, the operators 7,5 = 1,2,...d,
reduce to the corresponding partial derivatives. We suppose in the fol-
lowing that & # 0.
The Cherednik operators form a commutative system of differential-
difference operators.

For f of class C' on R? with compact support and g of class C* on
R?, we have for j = 1,2, .., d:

| T Aarts = = [ @)+ 500 Aa)ds,

with
VazeRY Sg(z) = Z k(a)alg(ram).
aER 4+

(See [16] p.302-303).

REMARK 2.1. The Dunkl operators T}, j = 1,2, .., d, associated to the

root system R, the reflection group W and the multiplicity function k
are defined, for f of class C' on R? and z € R¢_, by

TEeg?

1350) = )+ Y M8 ) - )

(See [7][15]).
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2.2. The Opdam-Cherednik kernel and the Heckman-Opdam
hypergeometric function (see [12][13][16][17][20]).

We denote by G, A € C%, the eigenfunction of the operators T}, j =
1,2,..,d. It is the unique analytic function on R? which satisfies the

differential-difference system

T’JG)\(ZL‘) :i)\jG)\(l‘>, j=12,..,d,x ERd, (2 2)
GA(0) =1 ’
It is called the Opdam-Cherednik kernel.
We consider the function F) defined by
1
VazeRY Fy(z)= 7 > Gi(wa). (2.3)

weW
This function is the unique analytic function on R?, which satisfies the
differential system

{ p(T)Fy\(z) =p(i\)F\(z), z€R%
F\(0) =1,

for all W-invariant polynomials p on C% and p(T) = p(Ty,Ts, ..., Ty).
The function F)(z) called the Heckman-Opdam hypergeometric func-
tion, it is W-invariant both in A and x.
The functions G and F) possess the following properties

i) For all A € C%, the functions z — Gy(z) and * — Fy(x) are of
class C™ on R?,
ii) For all z € RY, the functions A\ — Gy(x) and A — F\(x) are entire

on C%.
iii) For all z € R? and \ € C?, we have
Gi(z) =G_5(z) and Fy\(z) = F_5(z). (2.4)
iv) For all z € R% and A\ € R?, we have
(Ga(2)] < W2 and | Fy(x)] < [W]Y2. (2.5)

v) Let p and ¢ be polynomials of degree m and n. Then, there exists
a positive constant M such that for all A € C? and =z € RY, we
have

a a — max w LM(WA,T
P(53)a(5)GA@)] < M(L+ [l2])™ (1 + [IA)" Fo (e mewaw fmiete,

ox
(2.6)

The same inequality is also true for the function F)(z).
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vi) The function Fy(z) satisfies the estimate

Vo ed,, Fy(z) < e P H (14 (o, x)).

0
a€RY

vii) The function Gy(z), A € C? admits the following Laplace type
representation

vz eR,Gy(r) = (K, ™), (2.7)
where K, is a some distribution on R? with support in I' = conv{wz
,w € W} (the convex hull for the orbit of x under W).(See [16]
p.306).

viii) From (2.3), (2.6) we deduce that the function Fy(x),\ € C¢, pos-
sesses the Laplace type representation

Ve R Fy(z) = (K, &™), (2.8)
where K is the distribution on R? with support in I, given by
1
KV =— > Ku. (2.9)
|W| wWER+

REMARK 2.2. The functions G)(z) and F)(z) corresponding to the
Dunkl operators 7}, j = 1,2, ..,d, are denoted respectively K (x,\) and
Jw(z, A\) and called respectively the Dunkl kernel and the generalized
Bessel function. (See [7]).

ExXAMPLE 2.1. For d = 1 and W = Z,, the root system is R =
{—2a, —a,a,2a} with o = 2. Here Ry = {a,2a}. We consider the
multiplicity function k. We put k; = k() + k(2a), k2 = k(2a), and
p = k() + 2k(2a) = ky + 2ks.

The Cherednik operator is the following

150 = g1+ (o + 120 ) (a) — f(-a) - o),

dzx 1 —e 4z

which can also be written in the form

Ty f(x) = %f(l“) + (k1 coth(z) + kg tanh(x)) (f(z) — f(==)) — pf(—2).

The Opdam-Cherednik kernel is given by

ab 1 d a,b
vz ERVAEC, Gy(z)= ! )(xHM—p%“O(A (@),
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where gp()\a’b)(m) is the Jacobi function (see[10]), with a = k; — % and

2
b == kQ - %
The Heckman-Opdam hypergeometric function has the form

Vz e R,YA € C, Fy(z) =" (z).
(See [4] p.164-165 and 167.)

EXAMPLE 2.2.
1. The root system of type B, on R? can be identified with the set R
given by
R = {:]:61, :]:62} U {:I:el + 62},

where {ey, es} is the standard basis of R2.
The root system R can also be written in the form

R = {:EOél, :EC(Q, :l:(l’g, :|:Oé4},
with,

ar=e;, g=ey, az=(e1—ey), as=(e;+ea).

We denote by R, the set of positive roots
R+ — {alu g, (3, 054}.

The Weyl group W is isomorphic to the hyperoctahedral group which is
generated by permutations and sign changes of the e;,7 =1, 2.

The multiplicity function k : R — [0, +00[ can be written in the form
k = (k1, ko), where k; is the value on the roots ay, ae, and ks is the value
on the roots as, ay.

The Cherednik operators T}, j = 1,2, associated with the Weyl group
W and the multiplicity function k, can be written for f of class C' on

R? and = € R?,, in the following form

Tif(x) = %f(m) + k {f(f)__efigf;x)}
f(x) = f(razz)  f(z) = f(ra,o) 1
ke 1 — e—(as2) + 1 — e—{aa,x) } - (§k1 + ko) f(2),
0 = F(ra,
Tof(0) = 5 (o) + g L= L))
f(@) = f(ragz)  f(@) = flra,x)] 1
k2 |:_ 1 — e—{es.x) - 1 — e—(a4,) ] - éklf(x)
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(See [18]).
2. The root system of type Cy on R? can be identified with the set R
given by
R = {:t2€1, :|:262} U {:I:el + 62}7
which can also be written in the form
R = {:i:Oél, :l:Oég, :|:Oé3, :|:Q{4},
with,
ap =2ey, ag=2ey, az=(e;—ey), ay=(e1+ey).
The set of positive roots is the following
R+ = {alu g, O3, 054}.

If we denote by W (Cy) the Weyl group associated with the root system
R of type Cs, then we have

W(C2) = W(By).

We denote by k = (ky, k2) the multiplicity function of the root system
R of C5, where k; is the value on the roots aq, as, and ko is the value
on the roots as, ay. (See [18]).

EXAMPLE 2.3. We consider the root system R on R given by
R ={xa;, 20,1 =1,2,..,d}.
We denote by R, the set of positive roots
R =A{w,20;,1=1,2,..,d}.

The Cherednik operators Tj,7 = 1,2, .., d, associated to the Weyl group
W and the multiplicity function k are defined, for f of class C' on R¢
and x € RY . by

reg’

= 8_:15] 672<z,a¢>

() = G4 | Tty + Ty | @) =)

- (Z@(ai) + %(2%-))) (o),

i=1

with o] = (q;, ¢;). (See [19]).
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3. The harmonic analysis associated to the Heckman-Opdam
theory on R?

In this section, we give the harmonic analysis associated to the Heckman-
Opdam theory (the hypergeometric Fourier transform, the hypergeomet-
ric translation operator and the hypergeometric convolution product).
We shall precise these notions needed in the following subsections.

3.1. The harmonic analysis associated to the Heckman-Opdam
theory on the space of W-invariant C*°-functions.

Notations. We denote by

- E(RHYW the space of C®-functions on R?, which are W-invariant.

- D(RYW the space of C™-functions on R?, with compact support
and W-invariant.

- S(RHYW the space of W-invariant functions from the classical Schwartz
space S(R?).

- So(RHYW the space of C*®-functions on R?, which are W-invariant,
and such that for all /,n € N,

piald) = sup (1+ [l (Bo(w) ! |DS(0)] < o
z€R?

where

Olul S
Dt = g 1= (o) NGl = D
“ee /[/:1

Its topology is defined by the semi-norms py,, ¢, n € N.
- PW,(CHW  a > 0, the space of entire functions g on C?, which are
W-invariant and satisfying

Vm €N, gm(g) = sup (14 [[A])"e " g(N)] < +o0.
AeCd

The topology of PW,(C?) is defined by the semi-norms ¢,, m € N.
We set
PW(CHY = UysgPW,(CHW.
This space is called the Paley-Wiener space. It is equipped with the
inductive limit topology.
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3.1.1. The hypergeometric Fourier transform.

The hypergeometric Fourier transform H" has been defined and stud-
ied first by E.M.Opdam in [12] on the space of W-invariant C*°-functions
on R?.

DEFINITION 3.1. The hypergeometric Fourier transform H" is de-
fined for f in D(RH)W (resp. So(RH)W) by

VAeCLHY ()N = » flz)F_x(x)Ag(z)dx. (3.1)

REMARK 3.1. We have also the relation

VAeCLHY ()N = » f(x)Fr\(—2)Ag(z)dx. (3.2)

PROPOSITION 3.1. For all f in D(RY)W (resp. Sy(R¥)W) we have the
following relations

VA e RLHY(F)(N) = HY (N, (3.3)
VA eRLHY (V) = HY())(=N), (3-4)
where f is the function defined by
Vo eRY  fz) = f(—).

Proof. We deduce these results from relations (2.4),(3.1),(3.2). O

THEOREM 3.1. (See [12][13]).
i) The hypergeometric Fourier transform H" is a topological isomor-
phism from

e  DRHYW onto PW (CHW.

o S (RHW onto S(RHYW.
ii) Let f be in D(RY)W. Then suppf C B(0,a), the closed ball of center
0 and radius a > 0, if and only if its hypergeometric Fourier transform
HY (f) belongs to PW,(CHW.
iii) The inverse transform (H")~! is given by

Ve R (HY) L (h)(x) = / HB@C (ax

where

Ci'(A) = clew(M)I, (3.5)
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with ¢ a positive constant chosen in such a way that C}V (—p) = 1, and

L((i2. &) + 5k(5))
061:2[4_ F(<Z)"OV‘> + k(a) + %k(%)) )

with the convention that k(§) =0 if § ¢ R.

cr(A) = (3.6)

REMARK 3.2. The function C}¥ is continuous on R? and satisfies the
estimate

VA eRYLICY (V)| < const.(14 ||\, (3.7)

for some s > 0.

3.1.2. The hypergeometric transmutation operators V.YV and V)V

K.Trimeche has introduced in [16][17][20] the hypergeometric trans-
mutation operators V¥ and ‘V;Y'. These operators are useful to define
and study, in the following subsection, the hypergeometric translation
operator.

By using the distribution KV given by (2.9) we define the hypergeomet-
ric transmutation operator V¥ on £(RY)W by

Ve eR, Vi"(g)(2) = (K., g). (3.8)

This operator is called also the trigonometric Dunkl intertwining opera-
tor. It satisfies the relation

Vo eRY VAeC! VIV(e™) = Fy(2). (3.9)
The operator V' is the unique linear topological isomorphism from
E(RHYW onto itself satisfying the transmutation relations
Vo € R p(T)VE! (9)(x) = Vi (p(D)g)(x), g € ERNY,

for all W-invariant polynomials p on C¢, p(T) = p(Ty, T, ..., Ty) and
p(D) = p(D1, Dy, ..., Dg) with D; = 52-, j = 1,2, ..., d, and the condition

V" (9)(0) = g(0). (3.10)
The dual *VV of the operator V'V is defined by the following duality
relation

[ v nwstas = [ v e@@ w61
R R
with f in D(RHWY (resp. S2(RH)W) and g in E(RHW.

The operator ‘V,V is a linear topological isomorphism from

- D(RHW onto itself
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- S (RHY onto S(RYH)W, satisfying the transmutation relations
vy e RLVY ((T)f)(y) = p(D,)' Vi (/). f € DR)Y (resp.Sa(R)™),
for all W-invariant polynomials p on C% p(T) = p(Ty,Ts,..,T,), and

. 0 .
p(Dp) = p(D1,P17D27P27 "7Dd,pd) Wlth Dj,pj = 67 — 2p]7 j = 1,2, 7d
j
REMARK 3.3. By applying the relation (3.11) with the function g(y) =
e X € RY, we deduce from the relations (3.9),(3.1) that the opera-
tor VIV satisfies for f in D(RY)W (resp. S2(RY)W), the following relation

VA eRY Fo'Vi(f)(A) =HY ()N, (3.12)
where F is the classical Fourier transform on R<.

3.1.3. The hypergeometric translation operator TV and its dual *TV
on the space of W-invariant C*-functions.

By using the hypergeometric transmutation operators V¥ and ‘V}V
K.Trimeche has defined and studied in [17][20], the hypergeometric trans-
lation operator TV, x € R? and its dual '7.W. We give in this sub-
section the properties of these operators on the space of W-invariant
C*°-functions.

DEFINITION 3.2. We define the hypergeometric translation operator
TV, € RY on E(RH)Y by

Yy eRLTV (W) = V(DD (D@ +y)l (313)

PROPOSITION 3.2. The operator TV, x € RY, satisfies the following
properties

i) For all z € RY, the operator T,V is continuous from E(RY)W into itself.
ii) For all f in ERHYW and x,y € R, we have

TV (£)(0) = f(z) and T, (f)(y) = T," (f)(@). (3.14)
iii) For all z,y € R? and X\ € C¢, we have the product formula
TV (F)(y) = Fa(x). Fx(y), (3.15)

where F) is the Heckman-Opdam hypergeometric function given by
(2.3).
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Proof. 1) We deduce the result from (3.13) and the continuity of the
operator V¥ from £(RY)W into itself.
ii) The relations (3.13),(3.10) give the results.
iii) We deduce formula (3.15) from the relations (3.13),(3.9).’ O

DEFINITION 3.3. We define the hypergeometric translation operator
dual 'TV 2 € RY, on D(RHYW ( resp. So(RH)W) by

vy R T (N)) = (VCVE) IOV (D)) — )] (3.16)

PROPOSITION 3.3. The operator 'T)V, x € R? possesses the following
properties
i) For all z € R?, the operator "TV is continuous from D(RY)W (resp.
So(RHW) into itself.
ii) For all f in D(RY)W (resp. So(R)W ) and x,y € R?, we have

T (D) = T (). (3.17)
iii) For all f in D(RH)W (resp. So(RHW ) and h in E(RY)W | we have

L = [ T A, @13

iv) For all f in D(RYW (resp. S2(RY)W ) and x € R, we have
VAe T MY (T (1)) = Fa@HY (D). (3.19)
v) For all f in D(RHYW (resp. So(RH)W ) and x,y € R, we have

T () = éd Fox(@) B R (HNC (AdA. (3.20)

vi) For all f in D(RY)W with support in the closed ball B(0,a) of center
0 and radius a > 0, we have

supp ' (f) € B(0,a + [Jal]). (3.21)

Proof. i) We deduce the result from (3.16) and the fact that the op-
erator 'VV is a topological isomorphism from D(RY)"W into itself (resp.
from Sy(RH)W into S(RH)W).

ii) The relation (3.16) give the result.
iii) We deduce (3.18) from the relations (3.16),(3.13) and Proposition
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3.5 of [17].
iv) From the relations (3.1),(3.18),(3.15), we have

e, YOO = [T @A A
= | SO E) ) Ay,

= F(z) | fy)Fa(y)Ar(y)dy,

thus,
va el HY (T ()N = Faa@)HY (H(N).

v) We deduce (3.20) from (3.19) and Theorem 3.1 iii).
vi) We obtain (3.21) from the relations (3.19),(2.5),(2.6) and Theorem
3.1 ii). 0

3.1.4. The hypergeometric convolution product.

In this subsection, we define the hypergeometric convolution prod-
uct by using the hypergeometric translation operator 7.V, z € R?, and
we study its properties on the space of W-invariant C*°-functions (see
[17][20]).

DEFINITION 3.4. The hypergeometric convolution product f*yw g of
the functions f, g in D(RHYW (resp. So(RH)W) is defined by

Vo eRY fawg(a) = [ T (N (=y)9(y) Ax(y)dy. (3.22)

R4

REMARK 3.4. We have
Vo € RY, fayw g(z) = 9 T (N W)i(y) Aly)dy. (3.23)

where ¢ is the function defined by

vy e R, G(y) = g(—y),

then, by applying the relation (3.18), the relation (3.23) can also be
written in the form

Vo € RY, fagyw g(x) = 5 F) TV () (y) Aw(y)dy. (3.24)
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PROPOSITION 3.4.
i) For all f,g in D(RY)Y (resp. So(R%)W), the function f *yw g belongs
to DIRHYW (resp. So(RHW).
ii) For all f,g in D(RHW (resp. So(RH)WY), we have

VAER HY ([ g)(A) = HY (HN)H (9)(N). (3.25)

Proof. i) We deduce the result from the relation (3.24) and the prop-
erties of the function "T,(g)(y).
ii) From the relation (3.1) we have

VYAXERY HY(f xyw g)(\) = /Rd f#qw g(x)F_\(x)Ag(x)dx.

By using the relations (3.24),(3.17) and Fubini’s theorem, we obtain
vV )\ e RY,

HY (f sy g) (V) = /

Rd

10| [ TP Ao At

(3.26)
But from (3.2),(3.1),(3.19),(3.4), we get

[ T Fa@atds = = [ T @) 0 Ade)ds

= [ @@ @) A,
= HY(T (@),

thus,
| @) o) sl dutodds = (- ()00
We put this relation in (3.26) and we obtain
VAERY, HY(f xuw g)(N) =H" (9)(V) SO0 Aly)dy,

we deduce (3.25) by applying (3.2). O

COROLLARY 3.1.
i) The hypergeometric convolution product is commutative and associa-

tive on D(RH)W and Sy(RY)W.
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ii) For all f,g in D(R?)"Y, the function f xyw g belongs to D(RY)Y, and
if supp f C B(0,a), a > 0, and supp g C B(0,b), b > 0, we have
supp (f *uw g) C B(0,a+b), (3.27)
where B(0, ¢), is the closed ball of center 0 and radius ¢ > 0.

Proof. 1) We deduce the result from Proposition 3.4 ii) and Theorem
3.1 i). ii) Proposition 3.4 ii) and Theorem 3.1 ii) imply the relation
(3.27). O

COROLLARY 3.2. For all f in D(R)W (resp. Sy(RY)Y ), we have
v,y € R TV (N) = TV (N (=y), (3.28)
where f is the function defined by
vz eRY, f(z) = f(—2).

Proof. From Corollary 3.1 1), the hypergeometric convolution product
is commutative, then we have

vz eRY | TV (9)(—y)f(y)Ax(y)dy = 5 T (F)(=y)g(y)Ar(y)dy.

Rd
On the other hand, from the relation (3.24) we have

vee R, [ TVQEn AL = [T D0 Ay

Thus, for all # € R? and g in D(RH)W (resp. So(RHW), we have

[T () (=y) = T ()] 9(y) Auly)dy = 0.

R4
This relation implies (3.28). O

PROPOSITION 3.5.
i) For all f in D(RH)W (resp. Se(RN)W ) and x € R?, we have
VA el HY (T ()N = Fa(@)HY () (V). (3.29)
ii) For all f in D(RY)W (resp. So(RH)W ) and x,y € R?, we have

T = [ B@R@RONCE WD (330)
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Proof. i) From the relations (3.2),(3.18), for all f in D(RH)W (resp.
So(RHW ) and = € R, we have

vaeCl HY(TV ()N = 20 (W) Ex(y) Ax(y)dy,

F@) TV (F)(=y)A(y)dy.

By using the relations (3.28),(3.15), we obtain

/
_ / F() T () () Axl)dy,
/

vAEC!, HY(T ()N = » FOTY (B3 (y) Ar(y)dy,

= Fi(z) 5 f(y)Fx(y) Ax(y)dy,
= F\(z) Rdf(y)FA(—y)Ak(y)dy-

The relation (3.2) implies (3.29).
ii) We deduce (3.30) from the relation (3.29) and Theorem 3.1 iii). O

3.2. The harmonic analysis associated to the Heckman-Opdam
theory on the Lik (RHW, p = 1,2, spaces.

3.2.1. The hypergeometric Fourier transform.

The hypergeometric Fourier transform H" has been studied by
K.Trimeche in [20] on the space L%, (R?)" of W-invariant square in-
tegrable functions on R¢, which has permit to prove formulas and a
theorem of Plancherel.

Notations. We denote by - L (R)", 1 < p < o0, the space of
measurable functions f on R? which are W-invariant and satisfying

1/p
s = ([ 1@l Aa)an) " < o0, 1< p< o

Hf“Ak,oo = ess sup |f<:[j)’ < +00.
zCcRd
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- L2y (RH)W, 1 < p < 400, the space of measurable functions f on
k

R?, which are W-invariant and satisfying

1/p
s = ([, Iroopetman)” < 4o 1<p< o
R

[fllewo = esssup|[f(A)] < +oc.
AER4

REMARK 3.5.
i) The space D(RY)" is dense in the space L (R4)".
ii) Sy(RHW C L2, (RH)W.

We give first the following relations relating to the hypergeometric
Fourier transform on D(RY)W (resp. So(RH)W ).

PROPOSITION 3.6. For all f,g in D(RY)W (resp. So(RH)W ), we have

[ s A = [ H ORI W (31
and
1 lare = IHY (Dllep »- (3.32)
Proof. From the relation (3.25) and Theorem 3.1 iii), we have

Ve € RY, fapw g(a) = / By (@) HY (HOHY @)(NCY (VA

R
The relations (3.22),(3.3) permit to write this relation in the following
form

va € R, » TV (N )3y Awly)dy = /Rd Fx(@)H" (HNHY (9)(A)C (M)dA.

We obtain (3.31) by changing ¢ by ¢ in the two members, by taking
x = 0, and by using the relations

vy e R TV (f)(y) = fly), and VA €RY Fy(0)=1.
L]

DEFINITION 3.5. The hypergeometric Fourier transform H" is de-
fined for f in LYy (R)" by

VAeREHY(F)(N) = » f(@)F_\(z)Ag(z)dx.



254 Amina Hassini, Rayaane Maalaoui, and Khalifa Trimeche

LEMMA 3.1. Let H be a Hilbert space, V a subspace of H dense in
H, and U: V —— H a linear continuous application when we equip V'
with the norm induced by H. Then U extends to a linear continuous
application from H into itself. If U is an isometry it extends to an
isometry from H into itself. By taking H = L% (RH)", V = Sy(RH)W
and U = H" and by using Corollary 3.3 and Lemma 3.1, we obtain the
following Theorem:

THEOREM 3.2.
i) (Plancherel formulas). For all f,g in L% (RY)" we have

| J@g@A@)dz = | HY(HOHT(NET X (3.33)
and

1 laxz = [ (Nllew 2- (3.34)

ii) (Plancherel theorem). The hypergeometric Fourier transform H" ex-
tends uniquely to an isometric isomorphism from L%, (R")" onto L2y, (R)".
k

COROLLARY 3.3. For all f in L%, (R")" such that H" (f) belongs to
Liw (RT)W, we have the following inversion formula
k

fl@)= [ HY(HNFA(2)CY (N)dA, ae. zeR?. (3.35)
Rd
REMARK 3.6. The inversion formula (3.35) is also true for all function
fin LY (R)Y bounded such that H" (f) belongs to Ly (R?)".
k
3.2.2. The hypergeometric translation operator.

DEFINITION 3.6. The hypergeometric translation operator TV, z €
R?, is defined on L% (R%)" by

HY (T ()N = Ea(@)HY ()N, AeR™ (3.36)

REMARK 3.7. Note that this definition makes sense because the hy-

pergeometric Fourier transform is, from Theorem 3.2 ii), an isomorphism
from L?, (R)" onto L2, (RY)", and from (2.5), for all A € R, the func-
k

tion F\(x) is bounded.

PROPOSITION 3.7.
i) For all f in L% (RY)Y, we have

I (Dllace < W2,z (3.37)
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ii) For all f in L%, (R")", we have

T (f)y) = lim Ex(@)Ex(m)HY (HNCG (A, (3.38)

where B(0,n) is the closed ball of center 0 and radius n. The limit is in

L2 (RHW.

iii) For all f in L%, (R")" such that H" (f) belongs to Ljw(R?)" and
k

r € R? we have
TV = [ B@BGRY ONCE WA ae. yeRL (339)
iv) For all f in L% (R)Y, we have

TV () =T (), yeR?, (3.40)

and

T (Ny) =T, (N)(@), zyeR" (3.41)

Proof. i) We obtain (3.37) from (3.36), Plancherel formula (3.34) and
(2.5).
ii) We deduce the result from (3.36) and Theorem 3.2 ii).
iii) The relation (3.36) and the inversion formula (3.35) imply the result.
iv) For the functions f of Sy(R%)"W the relations (3.30),(3.3),(3.4) imply
the relations (3.40),(3.41), we deduce these relations for the functions of
L2, (RH)Y from the density of So(RY)W in L% (R?)" and the relation
(3.38). O

PROPOSITION 3.8. For all f in L% (RY)", the mapping x — TV (f)
is continuous from R* into L2 (R*)W.

Proof. Let zyp € R? By using Plancherel formula (3.34) and the
relation (3.36), we obtain

1T = T Dl = IRV () = MY (Dl
= [ IFe) = PP (DR (ax

From the relation (2.5) and the fact that for all A € R¢, the function
x — F\(x) is continuous on RY, the dominated convergence theorem
implies

Lim |7V (f) = T ()ll.a.2 = 0.

T—TQ
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3.2.3. The hypergeometric convolution product.

In this subsection, we define the hypergeometric convolution product
by using the hypergeometric translation operator 7.,z € R¢, and we
study its properties on the space L% (R%)" (see [17][20]).

PROPOSITION 3.9. Let f be in L% (RY)W and g in LY (RY)Y, then
the function f *4w g defined all most everywhere on R? by

Foorga) = [ TV DE0a) Aty (342
belongs to L% (RY)Y, and we have
1f 200 gllae < W20 Fllag2llgllags (3.43)
and
HY(f #w g) = HY () H" (9). (3.44)

Proof. Let f, g, in D(RHW. From (3.14) and Fubini’s theorem, we
have

[ #aw g(@)p() Ay (2)da

R4

- [ (/[ 7;W<f><—y>mAk<x>dx) Auly)dy,

/ ( / 7" () (@)ela) A(x >d:z:) Ax(y)dy

By using Holder’s inequality and (3.37), we obtain

[ v g(@)p (@) Ap(2)de| < WV fllagollgllai el ae.  (3.45)

Rd
As the relation (3.45) remain true for all functions g in LY (R%)" and
froin L2 (RD)W thus we obtain (3.43). O

PROPOSITION 3.10. Let f and g be in L, (R*)". Then the function
f *yw g defined on R% by

f o g(a / T (F)(—)g(y) Au(y)dy,
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is continuous on R?, tends to zero at the infinity and we have

sup |f x50 g(2)] < [WIV2| f]l 4, 2l9]l 402 (3.46)

rER4

Proof. Let {fu}nen and {gn }nen be two sequences in D(R%)W which
converge respectively to f and g in L% (R%)". By using the fact that the
operator TV, x € R? is continuous from D(R?)"W into itself, we deduce
that the sequence {f, *3w gn}nen which belongs to D(RY)W | converges
to {f *yw g} uniformly on R%. Then, the function f *5w g is continuous
on R? and tends to zero at the infinity. The Holder’s inequality and
(3.37) imply the relation (3.46). O

PROPOSITION 3.11. Let f and g be in L% (R*)", then the function
f*3w g belongs to L%, (R")" if and only if the function H" (f).H" (g)
is in L% (RYWY, and we have HW (f syw g) = HY (f).H" (g), in the
L*-case.

To prove this Proposition, we need the following Lemma.

LEMMA 3.2. For all f,g in L% (R)"Y and all ¢ in S3(R%)", we have
the following identity

[ T a@ ) )@ Aa)de = [ HY OO @B W)dr
(3.47)
Proof. We denote by Z;(f) and Zy(f) respectively the first and the
second member of the relation (3.47). From Theorem 3.2 and Proposi-

tion 3.9, we see that Zy(f) = Z(f) for all fin (L} N L2 )(RY)W.
On the other hand, let f, be in (LY N L% )(RY)" such that

lim [|fu = fllaz = 0. (3.48)
n——+00
By using Holder’s inequality, Theorem 3.2 and Proposition 3.8 we obtain
1 _
1Z0(fa) = 220D < W R fo = Fllagallgll a2 [(H") ()] 4p00s

and

| Za(fn) = Zo() < M1 fa = fllagzllgll a2l ] 4y 00
Then, from (3.48) we get

lim Z,(fn) = Z:(f),

n—-+o0o
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and
lim ZQ(fn) = Z2<f)

n—-+o0o

We deduce the result from the density of (LY, NL% )(RY)" in L2 (RT)™.
U

Proof of Proposition 3.11
Suppose that the function f xyw g is in Lilk (RHW. By Lemma 3.2 and
Theorem 3.2, for all ¢ in So(RH)W | we have

HY(NHNHY (@) NP NCT(NdA = [ HY (frar g) (NPA)CL (A)dA,

R4 Rd
which shows that

HY(NNHY (9)(N) = HY(f 2300 9)(N), X € R
Conversely, if H" (f).H" (g) belongs to L% (R*)". By Lemma 3.2 and
Theorem 3.2, for all ¢ in So(RHW | we have

[ s o) () (0) ) st

:/Rd(%W)_l(HW(f)-HW(9))(I)(HW)_l(@b)(ﬂf)Ak(x)d%
which implies that
fraw g(a) = (H)THHY () HY (9)(2), = € RY
This achieves the proof of Proposition 3.11.

COROLLARY 3.4. For all f,g in L% (R")", we have

[ P utayds = [ Y (OWERY (FCY W, (349
where both sides are finite or infinite.

Proof.
- When f 3w g is in L% (R?)", we deduce (3.49) from Proposition 3.11
and the Plancherel formula (3.34).
- For the other case the sides of (3.49) are infinite. UJ
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4. Generalized wavelets and the generalized wavelet trans-
form on R?
4.1. Generalized wavelets on R,

By using the harmonic analysis associated to the Heckman-Opdam
theory given in the previous section, we define in this subsection, the
generalized wavelets on R? and we study their properties on the space
of W-invariant C*°-functions and on the space L (R4)W

DEFINITION 4.1. We say that a function g in L% (R?)" is a general-
ized wavelet on R?, if there exists a constant C, such that
i) 0 < Cy < 4o00.
ii) For almost all A € RY, we have

G= [ (11)

EXAMPLE 4.1. Let t > 0. We consider the function g defined by
Vo € RY, g(x) = —L) EY (z),

where £}V is the Heckman-Opdam Laplacian defined, for a function f
on R? of class C? and W-invariant, by

d
Lyf=>Y T:f. (4.2)

j=1
It has the following form : For z € R¢

LY f(x) Z k(o) co

aER 4

Teg)

>

WV (@), a) +lpl*f (=),

where A and V are respectively the Laplacian and the gradient on R,
and E}V, t > 0, the heat kernel given by

vr e RY EW(z) = / NP B ()W (A)dA. (4.3)
Rd
By using (2.2),(2.3),(4.2),(4.3) we obtain

Ve e RY g(z) = / ||A[| 2 UNIPHIRI) By (2)el (M) dA.
R4
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The function g belongs to So(R%)W, and we have
VAERT, HY (g)(N) = |||[Fe NI,
For A € R?\{0}, we have

oo da
¢, = [ Y oenPy
0
+00
e2t|p|2/ [A|[fe 2N g3 g,
0

By change of variables we obtain, for almost all A € R%:

_ 2
o—2tllel]

“= e
DEFINITION 4.2. We define the function [ on |0, 400 by
C @I lee (M)
= su

[

lk(a) =

sup (4.4)
AR\ {0} |CIE:/V()‘>| AeR4\ {0} ‘%(%)

where C}" and ¢ the functions given by the relations (3.5),(3.6).

REMARK 4.1. When k(«a) € N, for all @ € R, the function [} has the
following form

)
lp(a) = sup H H (i@\ad»z

AERN\{0} =

It satisfies the estimates
i) If a € [1,4+00]
0 < Ii(a) <a™?,
with v defined by the relation (2.1).
ii) If a €]0,1]
0<lp(a) < ] k(o).

aER4+

THEOREM 4.1. Let a > 0 and ¢ a generalized wavelet on R? in
L%, (RHYW. Then,
i) The function X\ — H" (g)(a)) belongs to L%, (R")", and we have
k()
ad

» 7™ (9)(aN)PCy" (M)dA < 19114, 2- (4.5)
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where lj, is the function given by the relation (4.4).
ii) There exists a function g, in L%, (R?)" such that

HY (90)(N) =H" (9)(a)), A eR, (4.6)
and we have ()
a
lgalla, 2 < 5 Igl, (7)
Proof.
i) By change of variables and from the relation (4.4) we obtain
A
Y () aNPCl (ax = / Y () ()
Rd
< NS (N)dA.

We deduce (4.5) from this relation and the Plancherel formula (3.34).
ii) The relation (4.5), Theorem 3.2.ii) and the Plancherel formula (3.34)
give the results. 0

Notation. We denote by H, the dilatation operator defined on S, (R%)W
by
Vo € RY, Ho(f)(2) = f(ax). (4.8)

PROPOSITION 4.1.
i) Let g be in D(R)Y (resp. So(RH)W). Then, for a > 0, the function
ga belongs to D(RY)W (resp. Sa(RY)W) and we have

1 _
Ve € RY gu(z) = E(thW) Yo Hy 0 "WYY (g)(2). (4.9)

ii) Let g be in D(RY)W with support in the closed ball B(0, R), of center
0 and radius R. Then for a > 0, the function g, belongs to D(R*)" with
support in B(0,aR).

Proof. i) From the relations (3.12),(4.6) we obtain
Vo e RY gu(z) = (V) ToFloH, 0 Fo 'VV(g)(z),  (4.10)

where F is the classical Fourier transform on R<.
On the other hand, by using (4.8) and by making changes of variables,
we obtain

vz e R FloH,o F(f)(x) = éHal(f)(x). (4.11)
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We deduce (4.9) from (4.10),(4.11).
ii) Let g be in D(R%)" with support in B(0, R). From Theorem 3.1.ii),
the function H" (g) belongs to PWr(C%)W. Then

VmeN, sup(l+ H)\H)me’R”Im’\”\’HW(g)()\)| < +o00.
AeCd

Thus, from this relation and (4.6) we obtain

Vm e N, sup(l+ ||)\||)me_“R”Im)‘H|7-[W(g)()\)| < +00.
AeCd

Then, we deduce the result from this relation and Theorem 3.1.ii). [

PROPOSITION 4.2. Let g be a generalized wavelet on R in Lilk (RHW.
Then, for a > 0 and b € R?, the function

Gap(t) = T,V gu(2), € R, (4.12)

is in L%, (RY)W, and we have
Coy < IWIC,. (413)
Proof. As the function g is in L%, (R?)", then from the relation (4.12)

and Proposition 3.7.i), the function b — ga is in L (R?)". Thus, the
relations (3.36),(4.6) imply

HY (gus) (V) = Fx(0)HY (g)(a)), A € R (4.14)
From (4.14) and Definition 4.1, we have for almost A € R%:

o [T W o dag
Coup = [EX(D)] i LG (4.15)
We deduce (4.13) from the relations (4.15),(4.1),(2.5). O

PROPOSITION 4.3. Let g be in D(RY)W with support in the closed
ball B(0, R), of center 0 and radius R > 0. Then, for a > 0 and b € R,
the function g, belongs to D(RY)W with support in B(0,aR + |[b]]).

Proof. As the function g belongs to D(R%)W then, from (4.12),(4.14),
we obtain
VA€ CY HY (gap)(N) = Fa(b)H" (ga) (V). (4.16)
But from (2.4),(2.5) there exists a positive constant M such that for all
A € C? and b € R? we have

|Fx(D)] < MEy(b)elllllmAIlL (4.17)
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and
1
[Fo(b)] < (W] (4.18)
As from Proposition 4.1.ii), the function g, is in D(R%)", then, from
Theorem 3.1.i) and the relations (4.16),(4.17),(4.18), the function H" (g, 5)
belongs to PW (C%)" and then we have

Vm € N, sup(1+ [|A]|)me”@FHIDImANZW (g, ) (A)] < oo,
AeCd

This relation and Theorem 3.1.ii) imply that the function g¢,, is in
DRHW, and
supp gap C B(0,aR + |[b]]).
O

COROLLARY 4.1. Let g be a generalized wavelet on R? in D(R4)W
(resp. So(RHW). Then, for a > 0 and b € R?, the function g,; belongs
to D(RHW (resp. Sy(RH)W).

Proof. We deduce the result from Propositions 4.1 and 4.2. ([l

PROPOSITION 4.4. Let g be a generalized wavelet on R? in L% (R%)"
such that H" (g) belongs to L}y (R*)". Then, the mapping (a,b) —
k
Yay Is continuous from )0, +-o0o[xR? into L4 (R4)W.
Proof. From the density of D(R)" in L% (R")"W it suffices to con-
sider the case where g is in D(RY)W with support in the closed ball
B(0, R), of center 0 and radius R > 0. Let (ag, by) €]0, +00[xR%, from

Proposition 4.3, there exists Ry > 0 such that for 0 < ay < a and
bo, b € R such that

la —aol <1, ||b—"boll <1, we have supp gop C B(0, Ry).
Then,
||ga,b_ga0,bo‘|i\k’2 < (/ Ak(l’)dl’) esssup:ceB(O,Ro)|ga,b<x)_gao,bo<=7f>|2-
B(0,Ro)
(4.19)
On the other hand, from (3.20),(3.28) we have

Gap(T) = /Rd Fx(2)FEx(O)HY (9)(aN)CY (N)dA, a.e. v € RY.
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By using this relation and (2.5), we obtain for z € R%:

(G0 (%) = Gag o ()] < [W]2 EABYH™ () (aX) = Fa(Bo) 1™ (9)(aoM)[Ci (A)dA.
R
(4.20)
As g is in D(RY)W and the function H" (g)()\) is in PW(C?)" then,
there exists a positive constant ¢y such that
Co

d w
with s the constant given by (3.7).
From the relation (4.21), we deduce that
YA ERL [HY (g)(aN)] < 0
€ ) ’H (g)(a )‘ = (1 + ||a)\H)s+d+1’
and
AR HY (g)(aoN)| < “@ .
VA eRY [H" (g9)(ao))] < (1 + |[agA|[)>+e+1
As for 0 < ag < a we have
1 1
VA € R? : 4.22
B P | ey P e

Then, from (2.5),(4.21),(4.22),(3.7), there exists a positive constant M
such that

A (9)(0X) = P K" () aoNICE () < (oo

with

1
d\ < +o0.
/Rd (1 + ao[A])* >

Thus, from the dominated convergence theorem we obtain

ol IR (9)(a)) — BB (9) (ao )G (1)dA = 0
(4.23)

On the other hand, from (4.20) we have

€833UPIGB(0,RO)|ga,b(I) - gao,b0($)|2

<1 ([ @ )00 - B (9wl A



The generalized wavelet transform on R for the Heckman-Opdam theory 265

Thus, the relation (4.23) implies that

I z a — Ya 2 = 0.
(a,b)—lf(rgo,bg) esssup EB(O,R0)|g ,b(x) Gap,bo (x)\

Then, from this relation and (4.19) we obtain

1' a,b 7 Ya — 0
(a,b)il({io,bo)ng b= Yool Ax.2

4.2. Generalized wavelet transform on R?.

With the aid of the results of the previous section, we define and
study the generalized wavelet transform, we give some of its properties
and we prove for it, Plancherel and inversion formulas.

DEFINITION 4.3. The generalized wavelet transform ®, on R is de-
fined for f in L% (R%)" by

®y(f)(a,b) = Rdf(x)ga,b(x)«‘lk(w)d% (a,b) €]0, +oo[xR".

We can also write it in the form
®,(f)(a,b) = [ 4w (D), (4.24)
where f is the function defined by
f(z) = f(—z), = eR%

PROPOSITION 4.5.
i) For f in L%, (R")", the function b — ®4(f)(a,b) is continuous on

R?, tends to zero at infinity and we have

le(a)|[ W], 1
sup |, (f)(a,0)| < (———) 2 fll.ar.2l19]].5.2-
beRd a

ii) For f in LY, (R")", the function b — ®,(f)(a,b) is defined almost

everywhere on R?, belongs to L, (R*)" and we have

li(a 1
2, Mae < D llallae (425)

i) If g is in D(RYW (resp. So(RYW), then for f in D(RHW (resp. Se(RH)W),
the function b — ®,(a,b) belongs to D(RY)W (resp. So(RHW).
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Proof. i) As f and g are in L, (R%)", then from Proposition 3.10,
the mapping b — @,(f)(a,b) = f 3w Ga(b) is continuous on R?, tends
to zero at infinity and we have

1
sup |y (f)(a, )] < [Wz[|fll.a..2llgalla, 2

beR

This relation and (4.7) give the relation (4.25).
ii) As fisin LY (RY)" and g isin L4 (RY)", we obtain the results from
the relation (4.24), Proposition 3.9 and the relation (4.7).

iii) We deduce the result from Proposition 4.1.ii) and Corollary 3.1 ii).
0

PROPOSITION 4.6. Let f be in L% (R)" and g in L% (R")" such
that H" (g) belongs to LYy, (R®)". Then, the mapping (a,b) — ®,4(f)(a,b)
is continuous on |0, +-o00[xR¢.

Proof. Let (ag,by) €]0,+oo[xR?. From Definition 4.3, for (a,b) €
10, +00[xR%, we have

@4 (f)(a,b) = y(f)(a0, bo)| < /Rd f (@)]9a.6(2) = Gao,bo ()| Ar(x)d
By using Holder inequality, we obtain

|[©4(f)(a,b) = @g(f)(a0, bo)| < [[f]]ac2llgap = Gaopollar.2-
We deduce the result from Proposition 4.4. O

THEOREM 4.2. (Plancherel formulas) Let g be a generalized wavelet
on R in L% (RH)W.
i) For f in L% (R%)W, we have

+c>o
W= [, [ ein@hrfamas @20

ii) For all f1, f, in L% (R)Y, we have

[ h@ @A) = Cig /R d /0 "y (1) b)) 0, 5) e A (b}
(1.27)
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Proof. i) From Definition 4.3 and Fubini-Tonelli’s theorem, we have

& L[ et ama

+oo da
_ L / [ 1T e a0 A(0)b)

From Corollary 3.4, we deduce that

_/Rd/m )@ )P A )b
L /+°° ([ O @ oEe (i

Then, from the relation (3.4) and Fubini-Tonelli’s theorem, we get

/Rd/m ab\—Ak()

da

. ] (4.28)
_ a
= [ OR[N (i
Rd 9J0 @
On the other hand, by using the fact that
Vo € RY VA € R, Fy,(2) = Fra(z),
and by applying (3.3) we obtain for almost all A\ € R%:
da da
MY @ NEE = [ AT
R4
Thus, from the relation (4.1), we have
. da da
[ @Enrs = [ @iy =c. @
Rd a Rd a

Then, the relation (4.26) follows from the relations (4.28),(4.29) and
Plancherel formula (3.34).
ii) We deduce the result from the i). O

THEOREM 4.3. (Inversion formula) Let g be a generalized wavelet
on R in L% (R)W. For f in Ly (R)™ N LY (R)W continuous and
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such that H" (f) belongs to L}y (R?)", we have the following inversion
k

formula for the transform ®,:

f(x):cig /0 7 /R d q>g(f)<a,b)ga,b(x)Ak(b)dmdfj, v R (4.30)

where, for each v € R?, both the inner integral and the outer integral
are absolutely convergent, but possible not the double integral.

Proof. We put

ita,e) = [ @y)(ab)gnsla) Ault)a
and
z(x)—cig/o Ooz'(a,a;)%“.

First, we shall prove that, for each z € RY, the integrals i(a,z) and I(z)
are absolutely convergent, and we have

I(x) = | HY(HNEA()C (A)d. (4.31)

Rd

As fisin LY, (RY)" and g, in L% (RY)", then from Proposition 4.2 and
Definition 4.3, for b € R?, we have

Oy (f)(a,0)gap(x) = fraw Ga(b)T," (94) ().

Proposition 3.9 and the relation (3.37) imply that the functions b —
f *w Ga(b) and

b — TV (9a)(b) belong to L% (R¥)". Then, Hélder’s inequality shows
that the integral i(a,x) is absolutely convergent.

On the other hand, from (3.40), the Plancherel formula (3.33), Proposi-
tion 3.9 and the relations (3.36),(3.4),(3.3), we obtain
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itae) = [ Froor mOT ()0 A

= [ HY(f s @) WVHW (T (G2) (VC (A)dA

Rd

= [ HY(fruw )N Ea(z) HY (G) (NG (VA

Rd

= [ HY(HOOH (@) N For(@)HY (7)) (VC (A)dA

Rd

= [ HY(HNHY (G) NH" (da) V) Fr(2)C (N)dA.

Rd

Then,

ia,z) = | HY(FHNHY (9) VP Fa(@)C” (A)dA. (4.32)

R4

Thus, from Fubini-Tonelli’s theorem and the relation (2.5), we get

1 [t da
gg ; |2(a7$)|;
Wit [ ol (& [P ) et

But, from Definition 4.1, for almost all A € R?, we have

1 [t da
o | e =1 (13)
g
Then,
& | e < W Dllgpa <+ @430
g

This inequality implies that the integral I(z) is absolutely convergent.
We prove now the relation (4.31). From the relation (4.32), we have

1 da

+o0o
=g [ [ A O0R @ORR@ Wl
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First, we apply Fubini-Tonelli’s theorem to the second member and we
use the relation (4.34). Next, we apply Fubini’s theorem and we obtain

oo a
1) = [ WG | a0 A (.

We deduce the relation (4.31) from (4.33).
As the function f belongs to LY (R)"W N L% (RY)" then, the inversion
formula (3.35) and Remark 3.6 imply the relation (4.30). O
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