DOI QR코드

DOI QR Code

INTERACTIVE DYNAMICS IN A BISTABLE ATTRACTION-REPULSION CHEMOTAXIS SYSTEM

  • Ham, YoonMee (Department of Mathematics Kyonggi University) ;
  • Lee, Sang-Gu (Department of Mathematics Sungkyunkwan University)
  • Received : 2016.01.11
  • Accepted : 2016.05.04
  • Published : 2016.06.30

Abstract

We consider a bistable attraction-repulsion chemotaxis system in one dimension. The study in this paper asserts that conditions for chemotactic coefficients for attraction and repulsion to show existence of stationary solutions and Hopf bifurcation in the interfacial problem as the bifurcation parameters vary are obtained analytically.

Keywords

References

  1. M.Aida, T.Tsujikawa, M.Efendiev, A.Yagi and M. Mimura, Lower estimate of the attractor dimension for a chemotaxis growth system, J. London Math. Soc. 74 (2006), 453-474. https://doi.org/10.1112/S0024610706023015
  2. M.G.Crandall and P.H.Rabinowitz, The Hopf Bifurcation Theorem in In nite Dimensions, Arch. Rat. Mech. Anal. 67 (1978), 53-72.
  3. P.Fife, Dynamics of internal layers and diffusive interfaces, CMBS-NSF Regional Conference Series in Applied Mathematics, 53, Philadelphia: SIAM 1988.
  4. Y.M.Ham, Lee, R.Schaaf and R.Thompson, A Hopf bifurcation in a parabolic free boundary problem, J. of Comput. Appl. Math. 52 (1994), 305-324. https://doi.org/10.1016/0377-0427(94)90363-8
  5. K.Ikeda and M.Mimura, Traveling wave solutions of a 3-component reaction-diffusion model in smoldering combustion, Commun. Pur. Appl. Anal. 11 (2012), 275-305.
  6. H. Jin and Z.A. Wang, Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differential Equations (2015), http://dx.doi.org/10.1016/j.jde.2015.08.040
  7. S.Kawaguchi, Chemotaxis-growth under the in uence of lateral inhibition in a three-component reaction-diffusion system, Nonlinearity, 24 (2011), 1011-1031. https://doi.org/10.1088/0951-7715/24/4/002
  8. J.P.Keener, A geometrical theory for spiral waves in excitable media, SIAM J. Appl. Math. 46 (1986), 1039-1056. https://doi.org/10.1137/0146062
  9. E.F.Keller and L.A.Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26 (1970), 399-415. https://doi.org/10.1016/0022-5193(70)90092-5
  10. J. Liu and Z.A. Wang, Classical solutions and steady states of an attraction-repulsion chemotaxis model in one dimension, J. Biol. Dyn. 6 (2012) 31-41.
  11. M.Luca, A.Chavez-Ross, L.Edelstein-Keshet and A.Mogilner, Chemotactic signalling, microglia, and alzheimer's disease senile plague: is there a connection?, Bull. Math. Biol. 65 (2003), 215-225.
  12. H. P. McKean, Nagumo's equation, Adv. in Math. 4 (1975), 209-223.
  13. M.Mimura and T.Tsujikawa, Aggregating pattern dynamics in a chemotaxis model including growth, Physica A. 230 (1996), 499-543. https://doi.org/10.1016/0378-4371(96)00051-9
  14. H.Mori, Global existence of the Cauchy problem for a chemotactic system with prey-predator dynamics, Hiroshima Math. J. 36 (2006), 77-111.
  15. K.Painter an d T.Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Quart. 10 (2002), 501-543.
  16. Y.Tao and Z.Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci. 23, (2013), DOI: 10.1142/S0218202512500443
  17. T.Tsujikawa, Singular limit analysis of planar equilibrium solutions to a chemotaxis model equation with growth, Methods Appl. Anal. 3 (1996), 401-431.