References
- M.Aida, T.Tsujikawa, M.Efendiev, A.Yagi and M. Mimura, Lower estimate of the attractor dimension for a chemotaxis growth system, J. London Math. Soc. 74 (2006), 453-474. https://doi.org/10.1112/S0024610706023015
- M.G.Crandall and P.H.Rabinowitz, The Hopf Bifurcation Theorem in Innite Dimensions, Arch. Rat. Mech. Anal. 67 (1978), 53-72.
- P.Fife, Dynamics of internal layers and diffusive interfaces, CMBS-NSF Regional Conference Series in Applied Mathematics, 53, Philadelphia: SIAM 1988.
- Y.M.Ham, Lee, R.Schaaf and R.Thompson, A Hopf bifurcation in a parabolic free boundary problem, J. of Comput. Appl. Math. 52 (1994), 305-324. https://doi.org/10.1016/0377-0427(94)90363-8
- K.Ikeda and M.Mimura, Traveling wave solutions of a 3-component reaction-diffusion model in smoldering combustion, Commun. Pur. Appl. Anal. 11 (2012), 275-305.
- H. Jin and Z.A. Wang, Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differential Equations (2015), http://dx.doi.org/10.1016/j.jde.2015.08.040
- S.Kawaguchi, Chemotaxis-growth under the in uence of lateral inhibition in a three-component reaction-diffusion system, Nonlinearity, 24 (2011), 1011-1031. https://doi.org/10.1088/0951-7715/24/4/002
- J.P.Keener, A geometrical theory for spiral waves in excitable media, SIAM J. Appl. Math. 46 (1986), 1039-1056. https://doi.org/10.1137/0146062
- E.F.Keller and L.A.Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26 (1970), 399-415. https://doi.org/10.1016/0022-5193(70)90092-5
- J. Liu and Z.A. Wang, Classical solutions and steady states of an attraction-repulsion chemotaxis model in one dimension, J. Biol. Dyn. 6 (2012) 31-41.
- M.Luca, A.Chavez-Ross, L.Edelstein-Keshet and A.Mogilner, Chemotactic signalling, microglia, and alzheimer's disease senile plague: is there a connection?, Bull. Math. Biol. 65 (2003), 215-225.
- H. P. McKean, Nagumo's equation, Adv. in Math. 4 (1975), 209-223.
- M.Mimura and T.Tsujikawa, Aggregating pattern dynamics in a chemotaxis model including growth, Physica A. 230 (1996), 499-543. https://doi.org/10.1016/0378-4371(96)00051-9
- H.Mori, Global existence of the Cauchy problem for a chemotactic system with prey-predator dynamics, Hiroshima Math. J. 36 (2006), 77-111.
- K.Painter an d T.Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Quart. 10 (2002), 501-543.
- Y.Tao and Z.Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci. 23, (2013), DOI: 10.1142/S0218202512500443
- T.Tsujikawa, Singular limit analysis of planar equilibrium solutions to a chemotaxis model equation with growth, Methods Appl. Anal. 3 (1996), 401-431.