Acknowledgement
Supported by : Natural Science Foundation of China
References
- Abdollahzadeh, G. and Abbasi, M. (2015), "Response modification factor of suspended zipper braced frames", Steel Compos. Struct., Int. J., 18(1), 165-185. https://doi.org/10.12989/scs.2015.18.1.165
- ASCE (2013), Seismic Evaluation and Retrofit Rehabilitation of Existing Building, American Society of Civil Engineers, Reston, VA, USA.
- ASCE (2006), Seismic Rehabilitation of Existing Building, American Society of Civil Engineers, Reston, VA, USA.
- AISC341-10 (2010), Seismic Provision for Structure Steel Buildings, American Institute of Steel Construction, Chicago, IL, USA.
- Aydin, E., Sonmez, M. and Karabork, T. (2015), "Optimal placement of elastic steel diagonal braces using artificial bee colony algorithm", Steel Compos. Struct., Int. J., 19(2), 349-368. https://doi.org/10.12989/scs.2015.19.2.349
- Bendsoe, M.P. and Kikuchi, N. (1988), "Generating optimal topologies in structural design using a homogenization method", Comput. Method. Appl. Mech. Eng., 71(2), 197-224. https://doi.org/10.1016/0045-7825(88)90086-2
- Computer and Structures, Inc. (2008), Perform 3D User's Guide, CSI, CA, USA.
- D'Aniello, M., La, M.A.G., Portioli, F. and Landolfo, R. (2013), "Modelling aspects of the seismic response of steel concentric braced frames", Steel Compos. Struct., Int. J., 15(5), 539-566. https://doi.org/10.12989/scs.2013.15.5.539
- GB50011 (2010), Code for Seismic Design of Buildings, Architecture Industry Press, Beijing, China.
- Ghowsi, A.F. and Sahoo, D.R. (2015), "Fragility assessment of buckling-restrained braced frames under near-field earthquakes", Steel Compos. Struct., Int. J., 19(1), 173-190. https://doi.org/10.12989/scs.2015.19.1.173
- Jia, M.M., Lu, D.G., Guo, L.H. and Sun, L. (2014), "Experimental research and cyclic behavior of bucklingrestrained braced composite frame", J. Construct. Steel Res., 95, 90-105. https://doi.org/10.1016/j.jcsr.2013.11.021
- Lee, D.K., Shin, S., Lee, J.H. and Lee, K. (2015), "Layout evaluation of building outrigger truss by using material topology optimization", Steel Compos. Struct., Int. J., 19(2), 263-275. https://doi.org/10.12989/scs.2015.19.2.263
- Lian, M., Su, M.Z. and Guo, Y. (2015), "Seismic performance of eccentrically braced frames with high strength steel combination", Steel Compos. Struct., Int. J., 18(6), 1517-1539. https://doi.org/10.12989/scs.2015.18.6.1517
- Liang, Q.Q., Xie, Y.M. and Steven, G.P. (2000), "Optimal topology design of bracing systems for multistory steel frames", J. Struct. Eng., 126(7), 823-829. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:7(823)
- Mijar, A.R., Swan, C.C., Arora, J.S. and Kosaka, I. (1998), "Continuum topology optimization for concept design of frame bracing systems", J. Struct. Eng., 124(5), 541-550. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:5(541)
- Opensees (2013), Open System for Earthquake Engineering Simulation, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, USA. http://opensees.-berkeley.edu
- Qu, Z., Maidac, Y., Sakatab, H. and Wada, A. (2015), "Seismic responses of reinforced concrete frames with buckling restrained braces in zigzag configuration", Eng. Struct., 105(12), 12-21. https://doi.org/10.1016/j.engstruct.2015.09.038
- Rezvani, F.H. and Asgarian, B. (2014), "Effect of seismic design level on safety against progressive collapse of concentrically braced frames", Steel Compos. Struct., Int. J., 16(2), 135-156. https://doi.org/10.12989/scs.2014.16.2.135
- Tasbihgoo, F., Lin, C.M. and Ho, L. (2009), "Seismic rehabilitation of Santa Monica Place Mall based on ASCE41", ATC&SEI Conference on Improving the Seismic Performance of Existing Buildings and Other Structures, San Francisco, CA, USA, December.
- Tirca, L., Serban, O., Lin, L., Wang, M. and Lin, N. (2015), "Improving the seismic resilience of existing braced-frame office buildings", J. Struct. Eng., 141(7), (C4015003)1-14.
- Xie, Y.M. and Steven, G.P. (1993), "A simple evolutionary procedure for structural optimization", Comput. Struct., 49(5), 885-896. https://doi.org/10.1016/0045-7949(93)90035-C
- Zhou, K.M. and Li, X. (2005), "Topology optimization of structures under multiple load cases using a fiber-reinforced composite material model", Comput. Mech., 38(5), 163-170.
- Zhou, K.M. and Chen, C.H. (2014), "Topology optimization of frame bracing system for natural frequency", Open Civil Eng. J., 8(1), 250-256. https://doi.org/10.2174/1874149501408010250
- Zhu, M., Yang, Y., Gaynor, A. and Guest, J. (2014), "Considering constructability in structural topology optimization", Structures Congress, Boston, MA, USA, April.
Cited by
- Bracing configuration and seismic performance of reinforced concrete frame with brace vol.26, pp.14, 2017, https://doi.org/10.1002/tal.1381
- Conceptual configuration and seismic performance of high-rise steel braced frame vol.23, pp.2, 2016, https://doi.org/10.12989/scs.2017.23.2.173
- Topology optimization for thin plate on elastic foundations by using multi-material vol.27, pp.2, 2018, https://doi.org/10.12989/scs.2018.27.2.177
- Topology optimization of reinforced concrete structure using composite truss-like model vol.67, pp.1, 2016, https://doi.org/10.12989/sem.2018.67.1.079
- Topology optimization of steel plate shear walls in the moment frames vol.29, pp.6, 2016, https://doi.org/10.12989/scs.2018.29.6.771
- Design of buckling constrained multiphase material structures using continuum topology optimization vol.54, pp.8, 2016, https://doi.org/10.1007/s11012-019-01009-z
- Multi-material topology optimization for crack problems based on eXtended isogeometric analysis vol.37, pp.6, 2016, https://doi.org/10.12989/scs.2020.37.6.663
- Topology Optimisation in Structural Steel Design for Additive Manufacturing vol.11, pp.5, 2016, https://doi.org/10.3390/app11052112