DOI QR코드

DOI QR Code

영하의 저온에 노출된 'Campbell Early'와 'Muscat Bailey A' 포도나무 신초의 전사체 비교

Transcriptomic analysis of 'Campbell Early' and 'Muscat Bailey A' grapevine shoots exposed to freezing cold stress

  • 김선애 (영남대학교 원예생명과학과) ;
  • 윤해근 (영남대학교 원예생명과학과)
  • Kim, Seon Ae (Department of Horticulture and Life Science, Yeungnam University) ;
  • Yun, Hae Keun (Department of Horticulture and Life Science, Yeungnam University)
  • 투고 : 2016.03.16
  • 심사 : 2016.04.04
  • 발행 : 2016.06.30

초록

환경스트레스 중의 하나인 저온에 대한 생육기의 포도나무의 반응을 분석하고자 -$2^{\circ}C$에서 4일 동안 저온처리 한두 품종('Campbell Early'와 'Muscat Baily A')의 포도나무잎을 이용하여 전사체를 분석하였고 특이발현유전자(differentially expressed genes, DEGs)를 검색하였다. 영하의 저온에 반응한 'Campbell Early'의 DEG를 기능별로 분석한 결과 생물대사에서 17,424개, 세포구성에서 28,954개, 분자기능에서는 6,972개의 유전자와 관련이 있었다. 발현이 유도되는 유전자로는 dehydrin xero 1, K-box region and MADS-box transcription factor family protein과 MYB domain protein 36이 있으며, 억제되는 유전자로는 light-harvesting chlorophyll B-binding protein 3, FASCICLIN-like arabinoogalactan 9와 pectin methylesterase 61 등이 있었다. 'Muscat Baily A'의 DEG는 생물대사에서 1,157개, 세포구성에서 1,350개, 분자기능에서는 431개의 유전자와 관련이 있었다. 발현이 유도되는 유전자로는 NB-ARC domain-containing disease resistance protein, fatty acid hydrozylase syperfamily와 isopentenyltransferase 3이 있으며, 억제되는 유전자로는 binding, IAP-like protein 1과 pentatricopeptide repeat superfamily protein 등이 있었다. Real-time PCR을 이용하여 영하의 저온에서 특이적으로 발현하는 유전자들을 검정하였으며, InterPro Scan을 통해 단백질 도메인을 분석한 결과 두 품종 모두에서 ubiquitin-protein ligase가 가장 많았다. 영하의 저온에 노출된 신초의 전사체 정보를 바탕으로 포도나무에서 저온 내성을 발현하는 기작을 연하는 데에 분자수준의 정보를 제공하고, 내한성 포도를 육종하는데 이용될 수 있을 것이다.

To understand the responses of grapevines in response to cold stress causing the limited growth and development, differentially expressed genes (DEGs) were screened through transcriptome analysis of shoots from 2 grapevine cultivars ('Campbell Early' and 'Muscat Baily A') kept at -$2^{\circ}C$ for 4 days. In gene ontology analysis of DEGs from 'Campbell Early', there were 17,424 clones related with biological process, 28,954 with cellular component, and 6,972 with molecular function genes in response to freezing temperature. The major induced genes included dehydrin xero 1, K-box region and MADS-box transcription factor family protein, and MYB domain protein 36, and inhibited genes included light-harvesting chlorophyll B-binding protein 3, FASCICLIN-like arabinoogalactan 9, and pectin methylesterase 61 in 'Campbell Early' grapevines. In gene ontology analysis of DEGs from 'Muscat Baily A', there were 1,157 clones related with biological process, 1,350 with cellular component, and 431 with molecular function gene. The major induced genes of 'Muscat Baily A' included NB-ARC domain-containing disease resistance protein, fatty acid hydrozylase superfamily, and isopentenyltransferase 3, and inhibited genes included binding, IAP-like protein 1, and pentatricopeptide repeat superfamily protein. All major DEGs were shown to be expressed differentially by freezing temperature in real time-PCR analysis. Protein domain analysis using InterPro Scan revealed that ubiquitin-protein ligase was redundant in both tested grapevines. Transcriptome profile of shoots exposed to cold can provide new insights into the molecular basis of tolerance to low-temperature in grapevines, and can be used as resources for development new grapevines tolerant to coldness.

키워드

참고문헌

  1. Alonso-Blanco C, Koornneef M (2000) Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci 5:22-29
  2. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106 https://doi.org/10.1186/gb-2010-11-10-r106
  3. Barah P, Jayavelu ND, Rasmussen S, Nielsen HB, Mundy J, Bones AM (2013) Genome-scale cold stress response regulatory networks in ten Arabidopsis thaliana ecotypes. BMC Genomics 14:722 https://doi.org/10.1186/1471-2164-14-722
  4. Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol 11:113-116 https://doi.org/10.1007/BF02670468
  5. Chiang CM, Kuo WS, Lin KH (2014) Cloning and gene expression analysis of sponge gourd ascorbate peroxidase gene and winter squash superoxide dismutase gene under respective flooding and chilling stresses. Hort Environ Biotechnol 55:129-137 https://doi.org/10.1007/s13580-014-0116-4
  6. Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444-451 https://doi.org/10.1016/j.tplants.2007.07.002
  7. Cho HY, Hwang SG, Kim DS, Jang CS (2012) Genome-wide transcriptome analysis of rice genes responsive to chilling stress. Can J Plant Sci 92:447-460 https://doi.org/10.4141/cjps2011-165
  8. Close TJ (1997) Dehydrins: A commomnality in the response of plants to dehydration and low temperature. Physiol Plant 100:291-296 https://doi.org/10.1111/j.1399-3054.1997.tb04785.x
  9. Cox MP, Peterson DA, Biggs PJ (2010) SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics 11:485 https://doi.org/10.1186/1471-2105-11-485
  10. Cramer GR, Ergul A, Grimplet J, Tillett RL, Tattersall EA, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch K, Schooley D, Cushman J (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7:111-134 https://doi.org/10.1007/s10142-006-0039-y
  11. Fennell A (2004) Freezing tolerance and injury in grapevines. J Crop Improvement 10:201-235 https://doi.org/10.1300/J411v10n01_09
  12. Fuller MP, Telli G (1999) An investigation of the frost hardiness of grapevine (Vitis vinifera) during bud break. Annu Appl Biol 135:589-595 https://doi.org/10.1111/j.1744-7348.1999.tb00891.x
  13. Hemstad PR, Luby JJ (2000) Utilization of Vitis riparia for the development of new wine varieties with resistance to disease and extreme cold. Acta Hortic 528:487-490
  14. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44-57 https://doi.org/10.1038/nprot.2008.211
  15. Huang W, Li L, Myers JR, Marth GT (2012) ART: A nextgeneration sequencing read simulator. Bioinformatics 28: 593-594 https://doi.org/10.1093/bioinformatics/btr708
  16. Huang Y, Si Y, Dane F. 2011. Impact of grafting on cold responsive gene expression in Satsuma mandarin (Citrus unshiu). Euphytica 177:25-32 https://doi.org/10.1007/s10681-010-0243-7
  17. Hur YY, Jung SM, Yun HK (2015) Current status and prospects of genomics and bioinformatics in grapes. J Plant Biotechnol 42:298-311 https://doi.org/10.5010/JPB.2015.42.4.298
  18. Kim SA, Ahn SY, Han JH, Kim SH, Noh JH, Yun HK (2013) Differential expression screening of defense related genes in dormant buds of cold-treated grapevines. Plant Breed Biotech 1:14-23 https://doi.org/10.9787/PBB.2013.1.1.014
  19. Koussevitzky S, Suzuki N, Huntington S, Armijo L, Sha W, Cortes D, Shulaev X, Mittler R (2008) Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. J Biol Chem 283:34197-34203 https://doi.org/10.1074/jbc.M806337200
  20. Kwon YA, Kwon WT, Boo KO, Choi Y (2007) Future projections on subtropical climate regions over south Korea using SRES A1B data. J Korean Geogr Soc 42:355-367
  21. Lee GH, Yu JG, Park YD (2015) Time-based expression networks of genes related to cold stress in Brassica rapa ssp. pekinensis. Korean J Hortic Sci Technol 33:114-123 https://doi.org/10.7235/hort.2015.14056
  22. Liu GT, Wang JF, Cramer G, Dai ZW, Duan W, Xu HG, Wu BH, Fan PG, Wang LJ, Li SH (2012) Transcriptomic analysis of grape (Vitis vinifera L.) leaves during and after recovery from heat stress. BMC Plant Biol 12:174 https://doi.org/10.1186/1471-2229-12-174
  23. Luby JJ, Mansfield AK, Hemstad PR, Beam BA (2003) Development and evaluation of cold hardy wine grape breeding selections and cultivars in the upper Midwest. AVERN Report
  24. Luedeling E, Girvetz EH, Semenov MA, Brown PH (2011) Climate change affects winter chill for temperature fruit and nut trees. PLoS ONE 6:e20155 https://doi.org/10.1371/journal.pone.0020155
  25. Ma YY, Zhang YL, Shao H, Lu J (2010) Differential physiobiochemical responses to cold stress of cold-tolerant and non-tolerant grape (Vitis L.) from china. J Agron Crop Sci 196:212-219
  26. Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139-158 https://doi.org/10.1016/j.abb.2005.10.018
  27. Oono Y, Seki M, Satoum M, Iida K, Akiyama K, Sakurai T, Fujita M, Yamaguchi-Shinozaki K, Shinozaki K (2006) Monitoring expression profiles of Arabidopsis genes during cold acclimation and deacclimation using DNA microarrays. Funct Integr Genomics 6:212-234 https://doi.org/10.1007/s10142-005-0014-z
  28. Plazek A, Zur I (2003) Cold-induced plant resistance to necrotrophic pathogens and antioxidant enzyme activities and cell membrane permeability. Plant Sci 164:1019-1028 https://doi.org/10.1016/S0168-9452(03)00089-X
  29. Rudrabhatla P, Reddy MM, Rajasekharan R (2006) Genome-wide analysis and experimentation of plant serine/threonine/tyrosine-specific protein kinases. Plant Mol Biol 60:293-319 https://doi.org/10.1007/s11103-005-4109-7
  30. Sanghera GS, Wani SH, Hussain W, Singh NB (2011) Engineering cold stress tolerance in crop plants. Curr Genomics 12:30-43 https://doi.org/10.2174/138920211794520178
  31. Seo HH, Park HS (2003) Fruit quality of 'Tsugaru' apples influenced by meteorological elements. Korean J Agric Forest Meteorol 5:218-225
  32. Tattersall EA, Grimplet J, DeLuc L, Wheatley MD, Vincent D, Osborne C, Ergul A, Lomen E, Blank RR, Schlauch KA, Cushman JC, Cramer GR (2007) Transcript abundance profiles reveal larger and more complex responses of grapevine to chilling compared to osmotic and salinity stress. Funct Integr Genomics 7:317-333 https://doi.org/10.1007/s10142-007-0051-x
  33. Thomashow MF (1999) Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol 50:571-599 https://doi.org/10.1146/annurev.arplant.50.1.571
  34. Tillett RL, Wheatley MD, Tattersall EA, Schlauch KA, Cramer GR, Cushman JC (2012) The Vitis vinifera C-repeat binding protein 4 (VvCBF4) transcriptional factor enhances freezing tolerance in wine grape. Plant Biotechnol J 10:105-124 https://doi.org/10.1111/j.1467-7652.2011.00648.x
  35. Walker MA, McKersie BD, Pauls KP (1991) Effects of chilling on the biochemical and functional properties of thylakoid membranes. Plant Physiol 97:663-669 https://doi.org/10.1104/pp.97.2.663
  36. Wu J, Zhang Y, Zhang H, Huang H, Folta KM, Lu J (2010) Whole genome wide expression profiles of Vitis amurensis grape responding to downy mildew by using Solexa sequencing technology. BMC Plant Biol 10:234 https://doi.org/10.1186/1471-2229-10-234
  37. Xin H, Zhu W, Wang L, Xiang Y, Fang L, Li J, Sun X, Wang N, Londo J, Li S (2013) Genome wide transcriptional profile analysis of Vitis amurensis and Vitis vinifera in response to cold stress. PLoS ONE 8:e58740 https://doi.org/10.1371/journal.pone.0058740
  38. Xu J (2014) Next-generation sequencing: Current technologies and applications. Caister Academic Press, Ontario, Canada.
  39. Yoon ST, Lee YH, Hong SH, Kim MH, Kang KK, Na YE, Oh YJ (2013) Vulnerability assessment of cultivation facility by abnormal weather of climate change. Korean J Agric Forest Meteorol 15:264-272 https://doi.org/10.5532/KJAFM.2013.15.4.264
  40. Zhou D, Zhou J, Meng L, Wang Q, Xie H, Guan Y, Ma Z, Zhong Y, Chen F, Liu j (2009) Duplication and adaptive evolution of the COR15 genes within the highly cold-tolerant Draba lineage (Brassicaceae). Gene 441:36-44 https://doi.org/10.1016/j.gene.2008.06.024