DOI QR코드

DOI QR Code

Effects of Apium graveolens Extract on the Oxidative Stress in the Liver of Adjuvant-Induced Arthritic Rats

  • 투고 : 2016.01.27
  • 심사 : 2016.05.03
  • 발행 : 2016.06.30

초록

Apium graveolens Linn. (Apiaceae) is an indigenous plant of the North and South Americas, Southern Europe, and Asia and has been widely used as a food or a traditional medicine for treatment of inflammation and arthritis. The purpose of this study was to investigate the antioxidant effects of a methanolic extract of A. graveolens (AGE) against liver oxidative stress in an adjuvant-induced arthritic rat model. The AGE (250, 500, and 1,000 mg/kg) was given orally for 24 consecutive days after induction by injecting complete Freund's adjuvant. Liver and spleen weights were recorded. The superoxide anion level, total peroxide (TP), glutathione peroxidase (GPx) activity, superoxide dismutase (SOD) activity, total antioxidant status, and oxidative stress index (OSI) were also measured. AGE treatment significantly decreased the levels of the superoxide anion, TP, and OSI whereas the GPx and SOD activities significantly increased in the liver of the arthritic rats. These results indicated that AGE showed an ameliorative effect against liver oxidative stress in adjuvant-induced arthritic rats by reducing the generation of liver free radicals and increasing the liver antioxidant enzyme activity.

키워드

참고문헌

  1. Lee DM, Weinblatt ME. 2001. Rheumatoid arthritis. Lancet 358: 903-911. https://doi.org/10.1016/S0140-6736(01)06075-5
  2. Smolen JS, Aletaha D. 2009. Developments in the clinical understanding of rheumatoid arthritis. Arthritis Res Ther 11: 204. https://doi.org/10.1186/ar2535
  3. Choy EHS, Panayi GS. 2001. Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med 344: 907-916. https://doi.org/10.1056/NEJM200103223441207
  4. Hitchon CA, El-Gabalawy HS. 2004. Oxidation in rheumatoid arthritis. Arthritis Res Ther 6: 265-278. https://doi.org/10.1186/ar1447
  5. Griffiths HR. 2005. ROS as signalling molecules in T cells-evidence for abnormal redox signalling in the autoimmune disease, rheumatoid arthritis. Redox Rep 10: 273-280. https://doi.org/10.1179/135100005X83680
  6. Sangha O. 2000. Epidemiology of rheumatic diseases. Rheumatology 39: 3-12.
  7. Haruna Y, Morita Y, Yada T, Satoh M, Fox DA, Kashihara N. 2007. Fluvastatin reverses endothelial dysfunction and increased vascular oxidative stress in rat adjuvant-induced arthritis. Arthritis Rheum 56: 1827-1835. https://doi.org/10.1002/art.22632
  8. Comar JF, Babeto de Sa-Nakanishi A, de Oliveira AL, Marques Nogueira Wendt M, Bersani Amado CA, Ishii Iwamoto EL, Peralta RM, Bracht A. 2013. Oxidative state of the liver of rats with adjuvant-induced arthritis. Free Radic Biol Med 58: 144-153. https://doi.org/10.1016/j.freeradbiomed.2012.12.003
  9. Wendt MM, de Sa-Nakanishi AB, de Castro Ghizoni CV, Bersani Amado CA, Peralta RM, Bracht A, Comar JF. 2015. Oxidative state and oxidative metabolism in the brain of rats with adjuvant-induced arthritis. Exp Mol Pathol 98: 549-557. https://doi.org/10.1016/j.yexmp.2015.04.002
  10. Fedatto Junior Z, Ishii-Iwamoto EL, Amado CB, Vicentini GE, Panerari AD, Bracht A, Kelmer-Bracht AM. 1999. Gluconeogenesis in the liver of arthritic rats. Cell Biochem Funct 17: 271-278. https://doi.org/10.1002/(SICI)1099-0844(199912)17:4<271::AID-CBF839>3.0.CO;2-P
  11. Fedatto Z Jr, Ishii-Iwamoto EL, Bersani-Amado C, Maciel ER, Bracht A, Kelmer-Bracht AM. 2000. Glucose phosphorylation capacity and glycolysis in the liver of arthritic rats. Inflamm Res 49: 128-132. https://doi.org/10.1007/s000110050570
  12. Moreland LW, O'Dell JR. 2002. Glucocorticoids and rheumatoid arthritis: back to the future?. Arthritis Rheum 46: 2553-2563. https://doi.org/10.1002/art.10567
  13. Nandi P, Kingsley GH, Scott DL. 2008. Disease-modifying antirheumatic drugs other than methotrexate in rheumatoid arthritis and seronegative arthritis. Curr Opin Rheumatol 20: 251-256. https://doi.org/10.1097/BOR.0b013e3282fb7caa
  14. Fazal SS, Singla RK. 2012. Review on the pharmacognostical & pharmacological characterization of Apium graveolens Linn. Indo Global J Pharm Sci 2: 36-42.
  15. Sowbhagya HB. 2014. Chemistry, technology, and nutraceutical functions of celery (Apium graveolens L.): an overview. Crit Rev Food Sci Nutr 54: 389-398. https://doi.org/10.1080/10408398.2011.586740
  16. Aydemir T, Becerik S. 2011. Phenolic content and antioxidant activity of different extracts from Ocimum basilicum, Apium graveolens and Lepidium sativum seeds. J Food Biochem 35: 62-79. https://doi.org/10.1111/j.1745-4514.2010.00366.x
  17. Jung WS, Chung IM, Kim SH, Kim MY, Ahmad A, Praveen N. 2011. In vitro antioxidant activity, total phenolics and flavonoids from celery (Apium graveolens) leaves. J Med Plants Res 5: 7022-7030.
  18. Yao Y, Ren G. 2011. Effect of thermal treatment on phenolic composition and antioxidant activities of two celery cultivars. LWT-Food Sci Technol 44: 181-185. https://doi.org/10.1016/j.lwt.2010.07.001
  19. Li P, Jia J, Zhang D, Xie J, Xu X, Wei D. 2014. In vitro and in vivo antioxidant activities of a flavonoid isolated from celery (Apium graveolens L. var. dulce). Food Funct 5: 50-56. https://doi.org/10.1039/C3FO60273G
  20. Ahmed B, Alam T, Varshney M, Khan SA. 2002. Hepatoprotective activity of two plants belonging to the Apiaceae and the Euphorbiaceae family. J Ethnopharmacol 79: 313-316. https://doi.org/10.1016/S0378-8741(01)00392-0
  21. Popovic M, Kaurinovic B, Trivic S, Mimica-Dukic N, Bursac M. 2006. Effect of celery (Apium graveolens) extracts on some biochemical parameters of oxidative stress in mice treated with carbon tetrachloride. Phytother Res 20: 531-537. https://doi.org/10.1002/ptr.1871
  22. Baananou S, Borgi W, Mahmoud A, Boukef K, Chouchane N, Aouam K, Boughattas NA. 2012. Anti-inflammatory and analgesic activities of Tunisian Apium graveolens L. leaves extracts in rats. J Biol Act Prod Nat 2: 225-231.
  23. Ramezani M, Nasri S, Yassa N. 2009. Antinociceptive and anti-inflammatory effects of isolated fractions from Apium graveolens seeds in mice. Pharm Biol 47: 740-743. https://doi.org/10.1080/13880200902939283
  24. Newbould BB. 1963. Chemotherapy of arthritis induced in rats by mycobacterial adjuvant. Br J Pharmacol Chemother 21: 127-136. https://doi.org/10.1111/j.1476-5381.1963.tb01508.x
  25. Batista-Duharte A, Lindblad EB, Oviedo-Orta E. 2011. Progress in understanding adjuvant immunotoxicity mechanisms. Toxicol Lett 203: 97-105. https://doi.org/10.1016/j.toxlet.2011.03.001
  26. Toda S, Kumura M, Ohnishi M. 1991. Effects of phenolcarboxylic acids on superoxide anion and lipid peroxidation induced by superoxide anion. Planta Med 57: 8-10. https://doi.org/10.1055/s-2006-960005
  27. Kosecik M, Erel O, Sevinc E, Selek S. 2005. Increased oxidative stress in children exposed to passive smoking. Int J Cardiol 100: 61-64. https://doi.org/10.1016/j.ijcard.2004.05.069
  28. Erel O. 2004. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 37: 277-285. https://doi.org/10.1016/j.clinbiochem.2003.11.015
  29. Hussain S, Slikker W Jr, Ali SF. 1995. Age-related changes in antioxidant enzymes, superoxide dismutase, catalase, glutathione peroxidase and glutathione in different regions of mouse brain. Int J Dev Neurosci 13: 811-817. https://doi.org/10.1016/0736-5748(95)00071-2
  30. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265-275.
  31. Arulmozhi S, Mazumder PM, Sathiyanarayanan L, Ashok P. 2011. Anti-arthritic and antioxidant activity of leaves of Alstonia scholaris Linn. R. Br. Eur J Integr Med 2: e83-e90.
  32. Kamanli A, Naziroglu M, Aydilek N, Hacievliyagil C. 2004. Plasma lipid peroxidation and antioxidant levels in patients with rheumatoid arthritis. Cell Biochem Funct 22: 53-57. https://doi.org/10.1002/cbf.1055
  33. Seven A, Guzel S, Aslan M, Hamuryudan V. 2008. Lipid, protein, DNA oxidation and antioxidant status in rheumatoid arthritis. Clin Biochem 41: 538-543. https://doi.org/10.1016/j.clinbiochem.2008.01.029
  34. Choosri N, Tanasawet S, Chonpathompikunlert P, Sukketsiri W. 2016. Apium graveolens extract attenuates adjuvant induced arthritis by reducing oxidative stress. J Food Biochem (online) doi: 10.1111/jfbc.12276.
  35. Ruderman EM, Crawford JM, Maier A, Liu JJ, Gravallese EM, Weinblatt ME. 1997. Histologic liver abnormalities in an autopsy series of patients with rheumatoid arthritis. Br J Rheumatol 36: 210-213. https://doi.org/10.1093/rheumatology/36.2.210
  36. Abraham S, Begum S, Isenberg D. 2004. Hepatic manifestations of autoimmune rheumatic diseases. Ann Rheum Dis 63: 123-129. https://doi.org/10.1136/ard.2002.001826
  37. Shivashri C, Rajarajeshwari T, Rajasekar P. 2013. Hepatoprotective action of celery (Apium graveolens) leaves in acetaminophen-fed freshwater fish (Pangasius sutchi). Fish Physiol Biochem 39: 1057-1069. https://doi.org/10.1007/s10695-012-9762-6

피인용 문헌

  1. Inhibitory effects of Clematis orientalis aqueous ethanol extract and fractions on inflammatory markers in complete Freund's adjuvant-induced arthritis in Sprague–Dawley rats pp.1568-5608, 2019, https://doi.org/10.1007/s10787-018-0543-4
  2. Inhibitory Effects of Apium graveolens on Xanthine Oxidase Activity and Serum Uric Acid Levels in Hyperuricemic Mice vol.23, pp.2, 2016, https://doi.org/10.3746/pnf.2018.23.2.127
  3. Effect of digestion on the phenolic content and antioxidant activity of celery leaf and the antioxidant mechanism via Nrf2/HO‐1 signaling pathways against Dexamethasone vol.43, pp.7, 2016, https://doi.org/10.1111/jfbc.12875
  4. Apium Plants: Beyond Simple Food and Phytopharmacological Applications vol.9, pp.17, 2016, https://doi.org/10.3390/app9173547
  5. Niosomes of active Fumaria officinalis phytochemicals: antidiabetic, antineuropathic, anti-inflammatory, and possible mechanisms of action vol.15, pp.None, 2016, https://doi.org/10.1186/s13020-020-00321-1
  6. Could Mesna and Celery Seed Cotherapy Modulate Oxidative Stress and Inflammation of the Urinary Bladder Induced by Ifosfamide in Rabbits? vol.14, pp.None, 2021, https://doi.org/10.2147/jir.s337405
  7. Rosuvastatin Attenuates Rheumatoid Arthritis-Associated Manifestations via Modulation of the Pro- and Anti-inflammatory Cytokine Network: A Combination of In Vitro and In Vivo Studies vol.6, pp.3, 2016, https://doi.org/10.1021/acsomega.0c05054