DOI QR코드

DOI QR Code

Anti-Diabetic, Alcohol-Metabolizing, and Hepatoprotective Activities of Moringa (Moringa oleifera Lam.) Leaf Extracts

모링가 잎 추출물의 항당뇨, 알코올 대사 및 간 보호 활성

  • Choi, Young Ju (Department of Food and Nutrition, College of Medical Life Sciences, Silla University) ;
  • Jung, Kyung Im (Department of Food and Nutrition, College of Medical Life Sciences, Silla University)
  • 최영주 (신라대학교 의생명과학대학 식품영양학과) ;
  • 정경임 (신라대학교 의생명과학대학 식품영양학과)
  • Received : 2016.01.29
  • Accepted : 2016.05.23
  • Published : 2016.06.30

Abstract

This study was carried out to investigate anti-inflammatory, anti-diabetic, alcohol metabolizing, and hepatoprotective effects of hot water (MOW) and 80% ethanol (MOE) extracts from moringa (Moringa oleifera Lam.) leaf. The total phenol content of MOW and MOE were 45.49 and 63.06 mg tannic acid equivalents/g, respectively. 1,1-Diphenyl-2-picrylhydrazyl radical scavenging activities of MOW and MOE were remarkably elevated in a dose-dependent manner, and about 60.8% and 71.3% at 1 mg/mL, respectively (P<0.01). Superoxide dismutase-like activities of MOW and MOE were 2.8% and 7.4% at 5 mg/mL, respectively (P<0.05). ${\alpha}-Glucosidase$ inhibitory activity also increased in a dose-dependent manner in both extracts, and MOE was higher about two times than MOW at 5 mg/mL (P<0.001). The effects of MOW and MOE on alcohol metabolizing activity were determined by measuring generation of reduced nicotinamide adenine dinucleotide (NADH) by alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH). ADH and ALDH activities significantly increased upon addition of MOW and MOE (P<0.05). Anti-inflammatory activity was examined in lipopolysaccharide-stimulated RAW 264.7 cells. Nitric oxide production was reduced to 32.1% and 81.2% by addition of MOW and MOE at 1 mg/mL, respectively (P<0.05). MOW and MOE showed significant protective effects against tacrine-induced cytotoxicity in Hep3B cells at $100{\mu}g/mL$. These results suggest that moringa leaf extracts have great potential as natural health products.

본 연구에서는 비타민과 단백질이 풍부하여 높은 영양가를 가지고 있으며, 콜레스테롤 제거 및 간 손상 방지와 염증, 심장병 등의 치료 효과가 있는 것으로 알려진 모링가 잎 추출물의 새로운 소재로서의 가능성을 검토하고자 항산화 활성과 항당뇨, 항염증 및 알코올분해능을 탐색하였다. 모링가 열수 및 에탄올 추출물의 총페놀 함량은 각각 45.49와 63.06 mg TAE/g으로 나타났다. 1,1-Diphenyl-2-picrylhydrazyl radical 소거능은 1 mg/mL 농도의 열수 및 에탄올 추출물에서 각각 60.81%와 71.29%로 에탄올 추출물의 소거능이 높게 나타났다. 모링가 열수 및 에탄올 추출물의 superoxide dismutase 유사 활성은 농도 의존적으로 증가하였으며, 5 mg/mL 농도의 열수 및 에탄올 추출물에서 각각 2.82%와 7.40%로 에탄올 추출물의 활성이 높은 것으로 나타났다. 모링가 추출물의 혈당 강하 효과를 확인하기 위해 실시한 ${\alpha}-glucosidase$ 활성 억제 효과는 5 mg/mL 농도의 열수 및 에탄올 추출물에서 45.19%와 88.14%로 에탄올 추출물의 저해 활성이 유의적으로 높게 나타났다. 숙취 해소능을 알아보기 위해 alcohol dehydrogenase 및 acetaldehyde dehydrogenase 활성을 측정한 결과 두 효소 모두 모링가 열수 및 에탄올 추출물의 농도에 의존적으로 증가하였다. Lipopolysaccharide(LPS)에 의하여 유도된 NO 합성은 열수 및 에탄올 추출물 1 mg/mL 농도에서 28.50%와 7.90%로 LPS 처리군(41.96%)보다 각각 32.1%와 81.2% 현저히 감소하였으며, 모링가 열수 및 에탄올 추출물이 tacrine으로 유도된 Hep3B 간암 세포주에 대하여 유의적인 보호 활성을 나타냈다. 이상의 결과에서와 같이 모링가 잎 열수 및 에탄올 추출물은 우수한 항당뇨, 항염증, 숙취 해소 효과 및 간세포 보호 효과가 있는 것으로 나타났기에 기능성 소재로서의 활용도가 높을 것으로 판단된다.

Keywords

References

  1. Anwar F, Latif S, Ashraf M, Gilani AH. 2007. Moringa oleifera: a food plant with multiple medicinal uses. Phytother Res 21: 17-25. https://doi.org/10.1002/ptr.2023
  2. Somali MA, Bajneid MA, Al-Fhaimani SS. 1984. Chemical composition and characteristics of Moringa peregrina seeds and seed oil. J Am Oil Chem Soc 61: 85-86. https://doi.org/10.1007/BF02672051
  3. Morton JF. 1991. The horseradish tree, Moringa pterigospema (Moringaceae) - A boon to arid lands?. Econ Bot 45: 318-333. https://doi.org/10.1007/BF02887070
  4. Lee HJ, Chang YC. 2012. Suppression of TNF-${\alpha}$-induced inflammation by extract from different parts of Moringa in HaCaT cells. J Life Sci 22: 1254-1260. https://doi.org/10.5352/JLS.2012.22.9.1254
  5. Sreelatha S, Jeyachitra A, Padma PR. 2011. Antiproliferation and induction of apoptosis by Moringa oleifera leaf extract on human cancer cells. Food Chem Toxicol 49: 1270-1275. https://doi.org/10.1016/j.fct.2011.03.006
  6. Guevara AP, Vargas C, Sakurai H, Fujiwara Y, Hashimoto K, Maoka T, Kozuka M, Ito Y, Tokuda H, Nishino H. 1999. An antitumor promoter from Moringa oleifera Lam. Mutat Res 440: 181-188. https://doi.org/10.1016/S1383-5718(99)00025-X
  7. Hamza AA. 2010. Ameliorative effects of Moringa oleifera Lam seed extract on liver fibrosis in rats. Food Chem Toxicol 48: 345-355. https://doi.org/10.1016/j.fct.2009.10.022
  8. Ghasi S, Nwobodo E, Ofili JO. 2000. Hypocholesterolemic effects of crude extract of leaf of Moringa oleifera Lam in high-fat diet fed wistar rats. J Ethnopharmacol 69: 21-25. https://doi.org/10.1016/S0378-8741(99)00106-3
  9. Okuda T, Baes AU, Nishijima W, Okada M. 2001. Coagulation mechanism of salt solution-extracted active component in Moringa oleifera seeds. Water Res 35: 830-834. https://doi.org/10.1016/S0043-1354(00)00296-7
  10. Ndhlala AR, Mulaudzi R, Ncube B, Abdelgadir HA, du Plooy CP, Van Staden J. 2014. Antioxidant, antimicrobial and phytochemical variations in thirteen Moringa oleifera Lam. cultivars. Molecules 19: 10480-10494. https://doi.org/10.3390/molecules190710480
  11. Park SH, Chang YC. 2012. Anti-fibrotic effects by moringa root extract in rat kidney fibroblast. J Life Sci 22: 1371-1377. https://doi.org/10.5352/JLS.2012.22.10.1371
  12. Cho HJ, Chang YC. 2014. Extract of moringa root inhibits PMA-induced invasion of breast chancer cells. J Life Sci 24: 8-13. https://doi.org/10.5352/JLS.2014.24.1.8
  13. Thakur S, Verma A. 2013. Antihistaminic effect of Moringa oleifera seed extract. Int J Pharm Res Allied Sci 2: 56-59.
  14. Abdull RAF, Ibrahim MD, Kntayya SB. 2014. Health benefits of Moringa oleifera. Asian Pac J Cancer Prev 15: 8571-8576. https://doi.org/10.7314/APJCP.2014.15.20.8571
  15. Lee DH, Han JM, Yang WM. 2015. The effects of Atractylodes japonica Koidz. on type 2 diabetic rats. J Korean Med 36: 75-85. https://doi.org/10.13048/jkm.15007
  16. Peters TJ. 1982. Ethanol metabolism. Br Med Bull 38: 17-20. https://doi.org/10.1093/oxfordjournals.bmb.a071726
  17. Chu CJ, Hsiao CC, Wang TF, Chan CY, Lee FY, Chang FY, Chen YC, Huang HC, Wang SS, Lee SD. 2005. Prostacyclin inhibition by indomethacin aggravates hepatic damage and encephalopathy in rats with thioacetamide-induced fulminant hepatic failure. World J Gastroenterol 11: 232-236. https://doi.org/10.3748/wjg.v11.i2.232
  18. Yun HY, Dawson VL, Dawson TM. 1996. Neurobiology of nitric oxide. Crit Rev Neurobiol 10: 291-316. https://doi.org/10.1615/CritRevNeurobiol.v10.i3-4.20
  19. Weisz A, Cicatiello I, Esumi H. 1996. Regulation of the mouse inducible-type nitric oxide synthase gene promoter by interferon-gamma, bacterial lipopolysaccharide and NG-monomethyl-L-arginine. Biochem J 316: 209-215. https://doi.org/10.1042/bj3160209
  20. Singleton VL, Orthofer R, Lamuela-Raventos RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299: 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
  21. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  22. Marklund S, Marklund G. 1975. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47: 468-474.
  23. Watanabe J, Kawabata J, Kurihara H, Niki R. 1997. Isolation and identification of alpha-glucosidase inhibitors from tochu-cha (Eucommia ulmoides). Biosci Biotechnol Biochem 61: 177-178. https://doi.org/10.1271/bbb.61.177
  24. Choi JT, Joo HK, Lee SK. 1995. The effect of Schizandrae fructus extract on alcohol fermentation and enzyme activities of Saccharomyces cervisiae. J Korean Soc Agric Chem Biotechnol 38: 278-282.
  25. Racker E. 1955. Alcohol dehydrogenase from baker's yeast. Methods Enzymol 1: 500-503. https://doi.org/10.1016/0076-6879(55)01084-7
  26. Koivula T, Koivusalo M. 1975. Different forms of rat liver aldehyde dehydrogenase and their subcellular distribution. Biochim Biophys Acta 397: 9-23. https://doi.org/10.1016/0005-2744(75)90174-6
  27. Marletta MA. 1993. Nitric oxide synthase structure and mechanism. J Biol Chem 268: 12231-12234.
  28. Sato M, Ramarathnam N, Suzuki Y, Ohkubo T, Takeuchi M, Ochi H. 1996. Varietal differences in the phenolic content and superoxide radical scavenging potential of wines from different sources. J Agric Food Chem 44: 37-41. https://doi.org/10.1021/jf950190a
  29. Moyo B, Oyedemi S, Masika PJ, Muchenje V. 2012. Polyphenolic content and antioxidant properties of Moringa oleifera leaf extracts and enzymatic activity of liver from goats supplemented with Moringa oleifera leaves/sunflower seed cake. Meat Sci 91: 441-447. https://doi.org/10.1016/j.meatsci.2012.02.029
  30. Siddhuraju P, Becker K. 2003. Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. J Agric Food Chem 51: 2144-2155. https://doi.org/10.1021/jf020444+
  31. Verma AR, Vijayakumar M, Mathela CS, Rao CV. 2009. In vitro and in vivo antioxidant properties of different fractions of Moringa oleifera leaves. Food Chem Toxicol 47: 2196-2201. https://doi.org/10.1016/j.fct.2009.06.005
  32. Kwon YR, Youn KS. 2014. Antioxidant activity and physiological properties of Moringa (Moringa oleifera Lam.) leaves extracts with different solvents. Korean J Food Preserv 21: 831-837. https://doi.org/10.11002/kjfp.2014.21.6.831
  33. Iqbal S, Bhanger MI. 2006. Effect of season and production location on antioxidant activity of Moringa oleifera leaves grown in Pakistan. J Food Compos Anal 19: 544-551. https://doi.org/10.1016/j.jfca.2005.05.001
  34. Jeong HJ, Lee SG, Lee EJ, Park W, Kim JB, Kim HJ. 2010. Antioxidant activity and anti-hyperglycemic activity of medicinal herbal extracts according to extraction methods. Korean J Food Sci Technol 42: 571-577.
  35. Kwon YR, Cho SM, Hwang SP, Kwon GM, Kim JW, Youn KS. 2014. Antioxidant, physiological activities, and acetylcholinesterase inhibitory activity of Portulaca oleracea extracts with different extraction methods. J Korean Soc Food Sci Nutr 43: 389-396. https://doi.org/10.3746/jkfn.2014.43.3.389
  36. Han KI, Kim M, Jo BK, Kim MJ, Kang MJ, Park K, Koo Y, Kim B, Jung EG, Han MD. 2015. Antimicrobial and antioxidative activities of the extracts from walnut (Juglans regia L) green husk. J Life Sci 25: 433-440. https://doi.org/10.5352/JLS.2015.25.4.433
  37. Kim SM, Cho YS, Sung SK, Lee IG, Lee SH, Kim DG. 2002. Antioxidative and nitrite scavenging activity of pine needle and green tea extracts. Korean J Food Sci Ani Resour 22: 13-19.
  38. Ko MS, Lee HJ, Kang MJ. 2012. Antioxidant activities and whitening effects of extracts from Hippolhae rhamnoides L.. J East Asian Soc Diet Life 22: 812-817.
  39. Kim KM, Park MH, Kim KH, Im SH, Park YH, Kim YN. 2009. Analysis of chemical composition and in vitro antioxidant properties of extracts from Sea Buckthorn (Hippophae rhamnoides). J Appl Biol Chem 52: 58-64. https://doi.org/10.3839/jabc.2009.011
  40. Heo SJ, Park EJ, Lee KW, Jeon YJ. 2005. Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresource Technol 96: 1613-1623. https://doi.org/10.1016/j.biortech.2004.07.013
  41. Han JH, Moon HK, Chung SK, Kang WW. 2015. Comparison of physiological activities of radish bud (Raphanus sativus L.) according to extraction solvent and sprouting period. J Korean Soc Food Sci Nutr 44: 549-556. https://doi.org/10.3746/jkfn.2015.44.4.549
  42. Kim HK, Han HS, Lee GD, Kim KH. 2005. Physiological activities of fresh Pleurotus eryngii extracts. J Korean Soc Food Sci Nutr 34: 439-445. https://doi.org/10.3746/jkfn.2005.34.4.439
  43. Nam SM, Kang IJ, Shin MH. 2015. Anti-diabetic and antioxidative activities of extracts from Crataegus pinnatifida. J East Asian Soc Diet Life 25: 270-277. https://doi.org/10.17495/easdl.2015.4.25.2.270
  44. Xu ML, Hu JH, Wang L, Kim HS, Jin CW, Cho DH. 2010. Antioxidant and anti-diabetes activity of extracts from Machilus thunbergii S. et Z.. Korean J Med Crop Sci 18: 34-39.
  45. Kim KM, Jung HJ, Sung HM, Wee JH, Kim TY, Kim KM. 2014. Study of the antioxidant and alcohol-degrading enzyme activities of soybean sprout sugar solutions. Korean J Food Sci Technol 46: 581-587. https://doi.org/10.9721/KJFST.2014.46.5.581
  46. Kim SM, Kang SH, Ma JY, Kim JH. 2006. A study on the extraction and efficacy of bioactive compound from Hovenia dulcis. Korean J Biotechnol Bioeng 21: 11-15.
  47. Kee JY, Kim MO, You IY, Chai JY, Hong ES, An SC, Kim H, Park SM, Youn SJ, Chae HB. 2003. Effects of genetic polymorphisms of ethanol-metabolizing enzymes on alcohol drinking behaviors. Korean J Hepatol 9: 89-97.
  48. Lee KS, Kim GH, Seong BJ, Kim HH, Kim MY, Kim MR. 2009. Effects of aqueous medicinal herb extracts and aqueous fermented extracts on alcohol-metabolizing enzyme activities. Korean J Food Preserv 16: 259-265.
  49. Lugnier C, Keravis T, Eckly-Michel A. 1999. Cross talk between NO and cyclic nucleotide phosphodiesterases in the modulation of signal transduction in blood vessel. J Physiol Pharmacol 50: 639-652.

Cited by

  1. Quality Characteristics of Noodles added with Moringa oleifera Leaf Powder vol.27, pp.3, 2017, https://doi.org/10.17495/easdl.2017.6.27.3.321
  2. Development of an antioxidative packaging film based on khorasan wheat starch containing moringa leaf extract pp.2092-6456, 2019, https://doi.org/10.1007/s10068-018-00546-9
  3. 야관문(Lespedeza Caneata) Ethanol 추출물이 알코올 투여한 생쥐의 간장에 미치는 영향 vol.17, pp.10, 2016, https://doi.org/10.5762/kais.2016.17.10.432
  4. 레몬 머틀 잎 추출물의 Hep G2 세포에서의 간 보호 효과 및 알코올대사 효소활성 vol.27, pp.11, 2016, https://doi.org/10.5352/jls.2017.27.11.1262
  5. 모링가 추출물에 대한 화장품약리활성 검증 vol.44, pp.3, 2016, https://doi.org/10.15230/scsk.2018.44.3.219
  6. 에탄올 농도별 당유자 잎의 최적추출조건 및 생리활성 평가 vol.46, pp.1, 2019, https://doi.org/10.5010/jpb.2019.46.1.045
  7. 알코올 유발 간 손상 마우스 모델에서 복합 추출물 MJY2018의 간 보호 및 항산화 효과 vol.28, pp.2, 2016, https://doi.org/10.14374/hfs.2020.28.2.189
  8. Enzymatic hydrolysis of perilla seed meal yields water-soluble dietary fiber as a potential functional carbohydrate source vol.29, pp.7, 2020, https://doi.org/10.1007/s10068-020-00738-2
  9. 흰쥐의 자궁에 대한 애엽-모링가 혼합추출물의 방사선 방호효과 vol.14, pp.6, 2016, https://doi.org/10.7742/jksr.2020.14.6.747