DOI QR코드

DOI QR Code

Aldose Reductase Inhibitory Alkaloids from Corydalis ternata

  • Seo, Wonse (School of Biotechnology, Yeungnam University) ;
  • Jung, Sang Hoon (Natural Products Research Center, Korea Institute of Science and Technology (KIST) Gangreung Institute) ;
  • Shim, Sang Hee (College of Pharmacy, Duksung Women's University)
  • Received : 2015.11.09
  • Accepted : 2015.12.24
  • Published : 2016.06.30

Abstract

A methanolic extract of Corydalis ternata having aldose reductase inhibitory activity was examined as a possible aldose reductase (ALR2) inhibitor, a key enzyme involved in diabetic complications. Seven alkaloids, tetrahydrocoptisine (1), corydaline (2), tetrahydropalmatine (3), isocorybulbine (4), corybulbine (5), dehydrocorydaline (6), and N-methyltetrahydroberbinium (7) were isolated from $CHCl_3$ fraction of C. ternata methanol extract. Among them, compounds 1, 5, and 7 exhibited $5.04{\pm}1.97%$, $5.00{\pm}1.26%$, and $1.80{\pm}2.33%$ inhibitions, respectively at $40{\mu}M$. The activities of the single compounds were not comparable to that of the whole extract, suggesting that the whole combination of each single compound was responsible for the activity of the extract as shown in many cases of natural medicines. Even though this is the second report on aldose reductase inhibition activity of C. ternata, recombinant human aldose reductase was employed in this study unlike in the previous report. Furthermore, the aldose reductase inhibitory activities of isocorybulbine, corybulbine, and N-methyltetrahydroberbinium, to the best of our knowledge, were evaluated for the first time in this study. These results suggest a use of the extract of C. ternata for ameliorating diabetic complications.

Keywords

References

  1. Lee, H. Y.; Kim, C. W. Kor. J. Pharmacogn. 1999, 30, 332-334.
  2. Kubo, M.; Matsuda, H.; Tokuoka, K.; Ma, S.; Shiomoto, H. Biol. Pharm. Bull. 1994, 17, 262-265. https://doi.org/10.1248/bpb.17.262
  3. Kim, S. R.; Hwang, S. Y.; Jang, Y. P.; Park, M. J.; Markelonis, G. J.; Oh, T. H.; Kim, Y. C. Planta Med. 1999, 65, 218-221. https://doi.org/10.1055/s-1999-13983
  4. Lin, M. T.; Chueh, F. Y.; Hsieh, M. T. Neurosci. Lett. 2001, 315, 53-56. https://doi.org/10.1016/S0304-3940(01)02323-0
  5. Liu, G. Q.; Algeri S.; Garattini, S. Arch. Int. Pharmacodyn. Ther. 1982, 258, 39-50.
  6. Chang, C. K.; Chueh, F. Y.; Hsieh, M. T.; Lin, M. T. Neurosci. Lett. 1999, 267, 109-112. https://doi.org/10.1016/S0304-3940(99)00322-5
  7. Sharma, O. P. Plant Taxonomy 2nd Ed; Tata McGraw-Hill company: New Delhi, 2009, p 238.
  8. Cheng, X.; Ni, B.; Zhang, Z.; Liu, Q.; Wang, L.; Ding, Y.; Hu, Y. Connect. Tissue Res. 2013, 54, 118-122. https://doi.org/10.3109/03008207.2012.754886
  9. Muppalaneni, N. B.; Rao, A. A. Bioinformation 2012, 8, 980-983. https://doi.org/10.6026/97320630008980
  10. Chatzopoulou, M.; Alexiou, P.; Kotsampasakou, E.; Demopoulos, V. J. Expert Opin. Ther. Pat. 2012, 22, 1303-1323. https://doi.org/10.1517/13543776.2012.726615
  11. Ramana, K. V. Biomol. Concepts 2011, 2, 103-114.
  12. Obrosova, I. G.; Kador, P. F. Curr. Pharm. Biotechnol. 2011, 12, 373-385. https://doi.org/10.2174/138920111794480642
  13. Lorenzi, M. Exp. Diabetes Res. 2007, 2007, 61038.
  14. Anil Kumar, P.; Bhanuprakash Reddy, G. Exp. Eye Res. 2007, 85, 739-740. https://doi.org/10.1016/j.exer.2006.08.002
  15. de la Fuente, J. A.; Manzanaro, S. Nat. Prod. Rep. 2003, 20, 243-251. https://doi.org/10.1039/b204709h
  16. Pitts, N. E.; Vreeland, F.; Shaw, G. L.; Peterson, M. J.; Mehta, D. J.; Collier, J.; Gundersen, K. Metabolism 1986, 35, 96-100. https://doi.org/10.1016/0026-0495(86)90195-2
  17. Pfeifer, M. A.; Schumer, M. P.; Gelber, D. A. Diabetes 1997, 46, S82-S89. https://doi.org/10.2337/diab.46.2.S82
  18. Matsuda, H; Morikawa, T.; Toguchida, I.; Yoshikawa, M. Chem. Pharm. Bull. 2002, 50, 788-795. https://doi.org/10.1248/cpb.50.788
  19. Matsuda, H; Wang, T.; Managi, H.; Yoshikawa, M. Bioorg. Med. Chem. 2003, 11, 5317-5323. https://doi.org/10.1016/j.bmc.2003.09.045
  20. Fernandez, M; Caballero, J.; Helguera, A. M.; Castro, E. A.; Gonzalez, M. P. Bioorg. Med. Chem. 2005, 13, 3269-3277. https://doi.org/10.1016/j.bmc.2005.02.038
  21. Kubo, M.; Matsuda, H.; Tokuoka, K.; Kobayashi, Y.; Ma, S.; Tanaka, T. Biol. Pharm. Bull. 1994, 17, 458-459. https://doi.org/10.1248/bpb.17.458
  22. Sato, S.; Kador, P. F. Biochem. Pharmacol. 1990, 40, 1033-1042. https://doi.org/10.1016/0006-2952(90)90490-C
  23. Yu, L. L.; Li, R. T.; Ai, Y. B.; Liu, W.; Deng, Z. S.; Zou, Z. M. Molecules 2014, 19, 13332-13341. https://doi.org/10.3390/molecules190913332
  24. Likhitwitayawuid, K.; Ruangrungsi, N.; Geoffrey, A.; Cordell, G. A. J. Sci. Soc. Thailand 1993, 19, 87-96. https://doi.org/10.2306/scienceasia1513-1874.1993.19.087
  25. Cushman, M.; Dekow, F. W. Tetrahedron 1978, 34, 1435-1439. https://doi.org/10.1016/0040-4020(78)80162-8
  26. Hughes, D. W.; Holland, H. L.; MacLean, D. B. Can. J. Chem. 1976, 54, 2252-2260. https://doi.org/10.1139/v76-320