DOI QR코드

DOI QR Code

Synergistic Effects of Chios Gum Mastic Extract and Low Level Laser Therapy on Osteoblast Differentiation

  • Lee, Ki-Hyun (Department of Oral Anatomy, School of Dentistry, Pusan National University) ;
  • Kim, Young-Seok (Department of Oral Anatomy, School of Dentistry, Pusan National University) ;
  • Yu, Su-Bin (Department of Oral Anatomy, School of Dentistry, Pusan National University) ;
  • Kang, Hae-Mi (Department of Oral Anatomy, School of Dentistry, Pusan National University) ;
  • Kwak, Hyun-Ho (Department of Oral Anatomy, School of Dentistry, Pusan National University) ;
  • Kim, In-Ryoung (Department of Oral Anatomy, School of Dentistry, Pusan National University) ;
  • Park, Bong-Soo (Department of Oral Anatomy, School of Dentistry, Pusan National University)
  • 투고 : 2016.05.10
  • 심사 : 2016.05.29
  • 발행 : 2016.06.30

초록

In the present study, we evaluated the effect of CGM on osteogenic differentiation of cultured osteoblasts, and determined whether combination treatment with LLLT had synergistic effects on osteogenic differentiation. The results indicated that CGM promoted proliferation, differentiation, and mineralization of osteoblasts at the threshold concentration of $10{\mu}g/ml$; whereas, CGM showed cytotoxic properties at concentrations above $100{\mu}g/ml$. ALP activity and mineralization were increased at concentrations above $10{\mu}g/ml$. CGM in concentrations up to $10{\mu}g/ml$ also increased the expression of osteoblast-activated factors including type I collagen, BMP-2, RUNX2, and Osterix. The CGM ($50{\mu}g/ml$) and LLLT (80 mW for 15 sec) combination treatment group showed the highest proliferation levels, ALP activity, and mineralization ratios. The combination treatment also increased the levels of phosphorylated forms of p38, ATF2, PKD, ERK, and JNK. In addition, the osteoblast differentiation factors including type I collagen, BMP-2, RUNX2, and Osterix protein levels were clearly increased in the combination treatment group. These results suggested that the combination treatment of CGM and LLLT has synergistic effects on the differentiation and mineralization of osteoblastic cells.

키워드

참고문헌

  1. Stanojkovic I, Kotur-Stevuljevic J, Spasic S, Milenkovic B, Vujic T, Stefanovic A, Ivanisevic J. Relationship between bone resorption, oxidative stress and inflammation in severe COPD exacerbation. Clinical Biochemistry. 2013;46:1678-1682. doi:10.1016/j.clinbiochem.2013.08.003.
  2. Jian J, Sun L, Cheng X, Hu X, Liang J, Chen Y. Calycosin-7-O-beta-d-glucopyranoside stimulates osteoblast differentiation through regulating the BMP/WNT signaling pathways. Acta Pharm Sin B. 2015;5:454-460. doi:10.1016/j.apsb.2015.06.005.
  3. Rodan GA, Martin TJ. Therapeutic approaches to bone diseases. Science. 2000;289:1508-1514. doi: 10.1126/ science.289.5484.1508.
  4. Boufker HI, Lagneaux L, Najar M, Piccart M, Ghanem G, Body J-J, Journe F. The Src inhibitor dasatinib accelerates the differentiation of human bone marrow-derived mesenchymal stromal cells into osteoblasts. BMC cancer. 2010;10:298. doi:10.1186/1471-2407-10-298.
  5. Osta B, Benedetti G, Miossec P. Classical and paradoxical effects of TNF-${\alpha}$ on bone homeostasis. Frontiers in immunology. 2014;5. doi:10.3389/fimmu.2014.00048.
  6. Triantafyllidi A, Xanthos T, Papalois A, Triantafillidis JK. Herbal and plant therapy in patients with inflammatory bowel disease. Ann Gastroenterol. 2015;28:210-220.
  7. Georgiadis I, Karatzas T, Korou LM, Katsilambros N, Perrea D. Beneficial health effects of Chios Gum Mastic and peroxisome proliferator-activated receptors: indications of common mechanisms. J Med Food. 2015;18:1-10. doi:10.1089/jmf.2014.0021.
  8. Paraschos S, Mitakou S, L Skaltsounis A. Chios gum mastic: a review of its biological activities. Current medicinal chemistry. 2012;19:2292-2302. doi: 10.2174/092986712800229014
  9. Zha LH, He LS, Lian FM, Zhen Z, Ji HY, Xu LP, Tong XL. Clinical Strategy for Optimal Traditional Chinese Medicine (TCM) Herbal Dose Selection in Disease Therapeutics. Am J Chin Med. 2015;10.1142/s0192415x1550086x:1550086. doi: 10.1142/s0192415x1550086x.
  10. Sun GD, Li CY, Cui WP, Guo QY, Dong CQ, Zou HB, Liu SJ, Dong WP, Miao LN. Review of Herbal Traditional Chinese Medicine for the Treatment of Diabetic Nephropathy. J Diabetes Res. 2016;2016:5749857. doi: 10.1155/2016/5749857.
  11. Huang Q, Shi J, Gao B, Zhang HY, Fan J, Li XJ, Fan JZ, Han YH, Zhang JK, Yang L, Luo ZJ, Liu J. Gastrodin: an ancient Chinese herbal medicine as a source for anti-osteoporosis agents via reducing reactive oxygen species. Bone. 2015;73:132-144. doi: 10.1016/j.bone.2014.12.059.
  12. Zheng ZR, Tang SH. [Comparative analysis on composition principles of traditional Chinese medicine prescriptions for osteoporosis and osteoarthritis]. Zhongguo Zhong Yao Za Zhi. 2014;39:3172-3175. doi: 10.4268/cjcmm20141633.
  13. Tuner J, Hode L. Laser therapy: clinical practice and scientific background: a guide for research scientists, doctors, dentists, veterinarians and other interested parties within the medical field: Prima Books AB; 2002.
  14. Yamaguchi M, Hayashi M, Fujita S, Yoshida T, Utsunomiya T, Yamamoto H, Kasai K. Low-energy laser irradiation facilitates the velocity of tooth movement and the expressions of matrix metalloproteinase-9, cathepsin K, and alpha (v) beta (3) integrin in rats. The European Journal of Orthodontics. 2010;32:131-139. doi: 10.1093/ejo/cjp078.
  15. Merli LADS, Santos MTBRD, Genovese WJ, Faloppa F. Effect of low-intensity laser irradiation on the process of bone repair. Photomedicine and Laser Therapy. 2005;23:212-215. doi: 10.1089/pho.2005.23.212.
  16. Pinheiro ALB, Gerbi MEM. Photoengineering of bone repair processes. Photomedicine and Laser Therapy. 2006; 24:169-178. doi: 10.1089/pho.2006.24.169.
  17. Stein A, Benayahu D, Maltz L, Oron U. Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomedicine and Laser Therapy. 2005;23:161-166. doi: 10.1089/pho.2005.23.161.
  18. Pyo S-J, Song W-W, Kim I-R, Park B-S, Kim C-H, Shin S-H, Chung I-K, Kim Y-D. Low-level laser therapy induces the expressions of BMP-2, osteocalcin, and TGF-${\beta}$1 in hypoxic-cultured human osteoblasts. Lasers in medical science. 2013;28:543-550. doi: 10.1007/s10103-012-1109-0.
  19. Qi F, Zhao L, Zhou A, Zhang B, Li A, Wang Z, Han J. The advantages of using traditional Chinese medicine as an adjunctive therapy in the whole course of cancer treatment instead of only terminal stage of cancer. Biosci Trends. 2015;9:16-34. doi: 10.5582/bst.2015.01019.
  20. Mukwaya E, Xu F, Wong MS, Zhang Y. Chinese herbal medicine for bone health. Pharm Biol. 2014;52:1223-1228. doi: 10.3109/13880209.2014.884606.
  21. Dimas KS, Pantazis P, Ramanujam R. Review: Chios mastic gum: a plant-produced resin exhibiting numerous diverse pharmaceutical and biomedical properties. In Vivo. 2012;26:777-785.
  22. Piluzza G, Bullitta S. Correlations between phenolic content and antioxidant properties in twenty-four plant species of traditional ethnoveterinary use in the Mediterranean area. Pharmaceutical biology. 2011;49:240-247. doi: 10.3109/13880209.2010.501083.
  23. Janakat S, Al-Merie H. Evaluation of hepatoprotective effect of Pistacia lentiscus, Phillyrea latifolia and Nicotiana glauca. Journal of Ethnopharmacology. 2002;83:135-138. doi:10.1016/S0378-8741(02)00241-6.
  24. Qiao J, Li A, Jin X, Wang J. Mastic alleviates allergic inflammation in asthmatic model mice by inhibiting recruitment of eosinophils. American journal of respiratory cell and molecular biology. 2011;45:95-100. doi: 10.1165/rcmb.2010-0212oc.
  25. Trivedi R, Kumar S, Kumar A, Siddiqui JA, Swarnkar G, Gupta V, Kendurker A, Dwivedi AK, Romero JR, Chattopadhyay N. Kaempferol has osteogenic effect in ovariectomized adult Sprague-Dawley rats. Molecular and cellular endocrinology. 2008;289:85-93. doi: 10.1016/j.mce.2008.02.027.
  26. Chin A, Yang Y, Chai L, Wong RW, Rabie AB. Effects of medicinal herb salvia miltiorrhiza on osteoblastic cells in vitro. J Orthop Res. 2011;29:1059-1063. doi: 10.1002/jor.21376.
  27. Chow RT, Johnson MI, Lopes-Martins RA, Bjordal JM. Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. The Lancet. 2009;374:1897-1908. doi: 10.1016/s0140-6736(09)61522-1.
  28. Albertini R, Villaverde A, Aimbire F, Salgado M, Bjordal J, Alves L, Munin E, Costa M. Anti-inflammatory effects of low-level laser therapy (LLLT) with two different red wavelengths (660nm and 684nm) in carrageenan-induced rat paw edema. Journal of Photochemistry and Photobiology B: Biology. 2007;89:50-55. doi: 10.1016/j.jphotobiol.2007.08.005.
  29. Chen AC-H, Arany PR, Huang Y-Y, Tomkinson EM, Saleem T, Yull FE, Blackwell TS, Hamblin MR, editors. Low level laser therapy activates NF-${\kappa}B$ via generation of reactive oxygen species in mouse embryonic fibroblasts. SPIE BiOS: Biomedical Optics; 2009: International Society for Optics and Photonics. doi: 10.1371/journal.pone.0022453.
  30. Kamali F, Bayat M, Torkaman G, Ebrahimi E, Salavati M. The therapeutic effect of low-level laser on repair of osteochondral defects in rabbit knee. Journal of Photochemistry and Photobiology B: Biology. 2007;88:11-15. doi:10.1016/j.jphotobiol.2007.04.010.
  31. Silveira PCL, Streck EL, Pinho RA. Evaluation of mitochondrial respiratory chain activity in wound healing by low-level laser therapy. Journal of Photochemistry and Photobiology B: Biology. 2007;86:279-282. doi:10.1016/j.jphotobiol.2006.10.002.
  32. Conlan MJ, Rapley JW, Cobb CM. Biostimulation of wound healing by low‐energy laser irradiation A review. Journal of clinical periodontology. 1996;23:492-496. doi: 10.1111/j.1600-051x.1996.tb00580.x.
  33. Bouvet‐Gerbettaz S, Merigo E, Rocca JP, Carle GF, Rochet N. Effects of low‐level laser therapy on proliferation and differentiation of murine bone marrow cells into osteoblasts and osteoclasts. Lasers in surgery and medicine. 2009; 41:291-297. doi: 10.1002/lsm.20759.
  34. Renno A, McDonnell P, Parizotto N, Laakso E-L. The effects of laser irradiation on osteoblast and osteosarcoma cell proliferation and differentiation in vitro. Photomedicine and laser surgery. 2007;25:275-280. https://doi.org/10.1089/pho.2007.2055
  35. Stein E, Koehn J, Sutter W, Wendtlandt G, Wanschitz F, Thurnher D, Baghestanian M, Turhani D. Initial effects of low-level laser therapy on growth and differentiation of human osteoblast-like cells. Wiener klinische Wochenschrift. 2008;120:112-117. doi: 10.1007/s00508-008-0932-6.
  36. Khadra M, Kasem N, Haanæs HR, Ellingsen JE, Lyngstadaas SP. Enhancement of bone formation in rat calvarial bone defects using low-level laser therapy. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2004;97:693-700. doi: 10.1016/j.tripleo.2003.11.008.
  37. Kostadinova R, Montagner A, Gouranton E, Fleury S, Guillou H, Dombrowicz D, Desreumaux P, Wahli W. GW501516- activated PPAR${\beta}$/${\delta}$ promotes liver fibrosis via p38-JNK MAPK-induced hepatic stellate cell proliferation. Cell Biosci. 2012;2:34-34. doi: 10.1186/2045-3701-2-34.
  38. Syed DN, Afaq F, Mukhtar H. Differential Activation of Signaling Pathways by UVA and UVB Radiation in Normal Human Epidermal Keratinocytes†. Photochemistry and photobiology. 2012;88:1184-1190. doi: 10.1111/j.1751-1097.2012.01115.x.
  39. Farrukh MR, Nissar U-A, Kaiser PJ, Afnan Q, Sharma PR, Bhushan S, Tasduq SA. Glycyrrhizic acid (GA) inhibits reactive oxygen Species mediated photodamage by blocking ER stress and MAPK pathway in UV-B irradiated human skin fibroblasts. Journal of Photochemistry and Photobiology B: Biology. 2015;148:351-357. doi: 10.1016/j.jphotobiol.2015.05.003
  40. Kumar D, Tewari-Singh N, Agarwal C, Jain AK, Inturi S, Kant R, White CW, Agarwal R. Nitrogen mustard exposure of murine skin induces DNA damage, oxidative stress and activation of MAPK/Akt-AP1 pathway leading to induction of inflammatory and proteolytic mediators. Toxicology letters. 2015;235:161-171. doi: 10.1016/j.toxlet.2015.04.006.
  41. Song L, Zhao J, Zhang X, Li H, Zhou Y. Icariin induces osteoblast proliferation, differentiation and mineralization through estrogen receptor-mediated ERK and JNK signal activation. European journal of pharmacology. 2013; 714:15-22. doi: 10.1016/j.ejphar.2013.05.039.
  42. Wu Y, Zhou J, Li Y, Zhou Y, Cui Y, Yang G, Hong Y. Rap1A Regulates Osteoblastic Differentiation via the ERK and p38 Mediated Signaling. PloS one. 2015;10. doi: 10.1371/journal.pone.0143777.
  43. Hou X, Shen Y, Zhang C, Zhang L, Qin Y, Yu Y, Wang L, Sun X. A specific oligodeoxynucleotide promotes the differentiation of osteoblasts via ERK and p38 MAPK pathways. International journal of molecular sciences. 2012;13:7902-7914. doi: 10.3390/ijms13077902.
  44. Wang X, Goh CH, Li B. p38 mitogen-activated protein kinase regulates osteoblast differentiation through osterix. Endocrinology. 2007;148:1629-1637. doi: 10.1210/en.2006-1000.
  45. Fan D, Chen Z, Wang D, Guo Z, Qiang Q, Shang Y. Osterix is a key target for mechanical signals in human thoracic ligament flavum cells. Journal of cellular physiology. 2007;211:577-584. doi: 10.1002/jcp.21016.
  46. Lemonnier J, Ghayor C, Guicheux J, Caverzasio J. Protein kinase C-independent activation of protein kinase D is involved in BMP-2-induced activation of stress mitogenactivated protein kinases JNK and p38 and osteoblastic cell differentiation. Journal of Biological Chemistry. 2004; 279:259-264. doi: 10.1074/jbc.m308665200.
  47. Kim H-J, Kim J-H, Bae S-C, Choi J-Y, Ryoo H-M. The protein kinase C pathway plays a central role in the fibroblast growth factor-stimulated expression and transactivation activity of Runx2. Journal of Biological Chemistry. 2003;278:319-326. doi: 10.1074/jbc.m203750200.