DOI QR코드

DOI QR Code

Determination of Tungsten Target Parameters for Transmission X-ray Tube: A Simulation Study Using Geant4

  • Nasseri, Mohammad M. (School of Plasma Physics and Nuclear Fusion, Institute of Nuclear Science and Technology (AEOI))
  • Received : 2015.10.27
  • Accepted : 2016.01.06
  • Published : 2016.06.25

Abstract

Transmission X-ray tubes based on carbon nanotube have attracted significant attention recently. In most of these tubes, tungsten is used as the target material. In this article, the well-known simulator Geant4 was used to obtain some of the tungsten target parameters. The optimal thickness for maximum production of usable X-rays when the target is exposed to electron beams of different energies was obtained. The linear variation of optimal thickness of the target for different electron energies was also obtained. The data obtained in this study can be used to design X-ray tubes. A beryllium window was considered for the X-ray tube. The X-ray energy spectra at the moment of production and after passing through the target and window for different electron energies in the 30-110 keV range were also obtained. The results obtained show that with a specific thickness, the target material itself can act as filter, which enables generation of X-rays with a limited energy.

Keywords

References

  1. Y. Cheng, J. Zhang, Y.Z. Lee, B. Gao, S. Dike, W. Lin, J.P. Lu, O. Zhou, Dynamic radiography using a carbon-nanotubebased field-emission X-ray source, Rev. Sci. Instrum. 75 (2004) 3264-3267. https://doi.org/10.1063/1.1791313
  2. M.M. Nasseri, A virtual experiment on pyroelectric X-ray generator, Nucl. Instrum. Methods Phys. Res. B 358 (2015) 255-257. https://doi.org/10.1016/j.nimb.2015.06.035
  3. J. Zhang, G. Yang, Y. Cheng, B. Gao, Q. Qiu, Y.Z. Lee, J.P. Lu, O. Zhou, Stationary scanning X-ray source based on carbon nanotube field emitters, Appl. Phys. Lett. 86 (2005) 184104, 1-3.
  4. R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubesdthe route toward applications, Science 297 (2010) 787-792.
  5. J.-W. Jeong, J.-T. Kang, S. Choi, J.-W. Kim, S. Ahn, Y.-H. Song, A digital miniature X-ray tube with a high-density triode carbon nanotube field emitter [Internet]. Appl. Phys. Lett. 102 (2013) 023504. Available from: http://dx.doi.org/10.1063/1.4776222.
  6. H. Sugie, M. Tanemura, V. Filip, K. Iwata, K. Takahashi, F. Okuyama, Carbon nanotubes as electron source in an Xray tube, Appl. Phys. Lett. 78 (2001) 2578-2581. https://doi.org/10.1063/1.1367278
  7. G.F. Knoll, Radiation Detection and Measurement, third ed., John Wiley & Sons, Hoboken (NJ), 1999.
  8. G. Lalwani, A.T. Kwaczala, S. Kanakia, S.C. Patel, S. Judex, B. Sitharaman, Fabrication and characterization of three dimensional macroscopic all-carbon scaffolds, Carbon 53 (2013) 90-100. https://doi.org/10.1016/j.carbon.2012.10.035
  9. S. Heo, H. Kim, J. Ha, S. Cho, A vacuum-sealed miniature X-ray tube based on carbon nanotube field emitters [Internet]. Nanoscale Res. Lett. 7 (2012) 258. Available from: http://dx.doi.org/10.1186/1556-276X-7-258.
  10. A. Ihsan, S.H. Heo, S.O. Cho, A microfocus X-ray tube based on a microstructured X-ray target, Nucl, Instrum. Methods Phys. Res. B 267 (2009) 3566-3573. https://doi.org/10.1016/j.nimb.2009.08.012
  11. Geant4 [Internet]. [cited 2016 Feb 1]. Available from:http://geant4.web.cern.ch/geant4/.
  12. S. Chauvie, S. Guatelli, V. Ivanchenko, F. Longo, A. Mantero, B. Mascialino, P. Nieminen, L. Pandola, S. Parlati, L. Peralta, M.G. Pia, M. Piergentili, P. Rodrigues, S. Saliceti, A. Tnndade, Geant4 low energy electromagnetic physics, IEEE Nucl. Sci. Symp. Conf. Rec. 3 (2004) 1881-1885.
  13. J. Apostolakis, S. Giani, M. Maire, P. Nieminen, M.G. Pia, L. Urban, Geant4 Low Energy Electromagnetic Models for Electrons and Photons, Rep. No. CERN-OPEN-99-034, European Organization for Nuclear Research, Geneva (Switzerland), 1999.
  14. S.T. Perkins, D.E. Cullen, S.M. Seltzer, Tables and Graphs of Electron-interaction Cross Sections from 10 eV to 100 GeV Derived from the LLNL Evaluated Electron Data Library (EEDL), Technical Report UCRL-50400-Vol. 31, Lawrence Livermore National Laboratory, Livermore (CA), 1997.
  15. P. Rodrigues, R. Moura, C. Ortigao, L. Peralta, M.G. Pia, A. Trindade, J. Varela, Geant4 applications and developments for medical physics experiments, IEEE Trans. Nucl. Sci. 51 (2004) 1412-1419. https://doi.org/10.1109/TNS.2004.832314
  16. J. Sempau, J.M. Fernandez-Varea, E. Acosta, F. Salvat, Experimental benchmarks of themonte carlo code PENELOPE, Nucl. Instrum. Methods Phys. Res. B 207 (2003) 107-123. https://doi.org/10.1016/S0168-583X(03)00453-1

Cited by

  1. Optimization of Energy Modulation Filter for Dual Energy CBCT Using Geant4 Monte-Carlo Simulation vol.27, pp.3, 2016, https://doi.org/10.14316/pmp.2016.27.3.125
  2. Assessment of two hemispherical and hemispherical-conical miniature sources used in electronic brachytherapy using Monte Carlo Simulation vol.9, pp.2, 2016, https://doi.org/10.19082/3845
  3. Monte Carlo simulation of X-ray spectra produced by Linac vol.1153, pp.None, 2016, https://doi.org/10.1088/1742-6596/1153/1/012109
  4. Design and numerical simulations of W-diamond transmission target for distributed x-ray sources vol.5, pp.2, 2016, https://doi.org/10.1088/2057-1976/aae55f
  5. Determination of molybdenum target parameters for transmission X-ray tube: A Geant4 simulation study vol.92, pp.4, 2016, https://doi.org/10.1007/s12043-019-1718-2
  6. Production and Heat Properties of an X-ray Reflective Anode Based on a Diamond Heat Buffer Layer vol.13, pp.1, 2016, https://doi.org/10.3390/ma13010241
  7. Ionizing radiation in electronics from the Compton scattering of quasi-stationary particles generated by characteristic and Bremsstrahlung x rays vol.10, pp.5, 2016, https://doi.org/10.1063/5.0006618
  8. One-step preparation, microstructure and properties of WRe/TZM gradient material for X-ray tube of CT scanner vol.15, pp.None, 2021, https://doi.org/10.1016/j.jmrt.2021.09.109
  9. Measurement of temperature induced X-ray tube transmission target displacements for dimensional computed tomography vol.72, pp.None, 2021, https://doi.org/10.1016/j.precisioneng.2021.06.002