DOI QR코드

DOI QR Code

시공간 적응적인 예측에 기초한 다시점 위너-지브 비디오 부호화 기법

Multi-View Wyner-Ziv Video Coding Based on Spatio-temporal Adaptive Estimation

  • 이범용 (한밭대학교 정보통신전문대학원) ;
  • 김진수 (한밭대학교 정보통신전문대학원)
  • 투고 : 2016.01.12
  • 심사 : 2016.02.18
  • 발행 : 2016.06.28

초록

본 논문에서는 시공간 적응적인 예측에 기초한 다시점 위너-지브 비디오 부호화 기법을 제안한다. 제안하는 알고리즘은 기존 움직임 추정 방법을 보완하여 가중치를 부여한 결합 양방향 움직임 추정을 수행하고, 각 시점 영상의 에지 검출 및 합성을 통해 관심영역을 효과적으로 분류하여 움직임 벡터 분석을 통해 최종 참조 프레임을 선택하여 보간 한다. 제안하는 알고리즘은 단일 시점 내의 움직임 정보와 인접 카메라 프레임의 정보를 적응적으로 이용함으로써 영상 내 다양한 폐색, 반사 영역에 대해 효율적으로 처리하고 더 나은 성능을 갖는다. 다양한 다시점 영상 시퀀스에 대한 실험을 통하여, 제안하는 알고리즘은 보조정보 생성하는 기존 알고리즘에 비해 평균 비트율 감소와 더불어 우수한 객관적 화질 향상을 얻었다.

This paper proposes a multi-view Wyner-Ziv Video coding scheme based on spatio-temporal adaptive estimation. The proposed algorithm is designed to search for a better estimated block with joint bi-directional motion estimation by introducing weights between temporal and spatial directions, and by classifying effectively the region of interest blocks, which is based on the edge detection and the synthesis, and by selecting the reference estimation block from the effective motion vector analysis. The proposed algorithm exploits the information of a single frame viewpoint and adjacent frame viewpoints, simultaneously and then generates adaptively side information in a variety of closure, and reflection regions to have a better performance. Through several simulations with multi-view video sequences, it is shown that the proposed algorithm performs visual quality improvement as well as bit-rate reduction, compared to the conventional methods.

키워드

참고문헌

  1. B. Girod, A. M. Aaron, S. Rane, and D. Rebello-Monedero, "Distributed Video Coding," Proc. IEEE, Vol.93, No.1, pp.71-83, 2005(1). https://doi.org/10.1109/JPROC.2004.839619
  2. R. Puri and K. Ramchandran, PRISM: A Video Coding Architecture Based on Distributed Compression Principles, Dept. EECS, Univ. California, Berkeley, CA, USA, Tech. Rep. UCB/ERL M03/6, 2003.
  3. B. Manel, "Block-Based Distributed Video Coding Without Channel Codes," Control, Engineering & information Technology(CEIT), 2015 3rd International Conference on, pp.1-5, 2015(5).
  4. Q. Tong and K. Choi, "A High Speed Pipeline Structure of Hardware Implementation for Block Classification for Distributed Video Coding," SoC Design conference(ISOCC), 2014 International, pp.160-162, 2014(11).
  5. X. Artigas, F. Tarres, amd L. Torres, "A Comparison of Different Side Information Generation Methods for Multiview Distributed Video Coding," International Conference on Signal Processing and Multimedia Applications SIGMAP, 2007.
  6. V. K. Kodavalla and P. G. K. Mohan, "Multi-view Distributed Video Coding," 2012 International Conference on Devices, Circuits and Systems (ICDCS), Vol.2, No.I, pp.614-618, 2012(3).
  7. M. Ouaret, F. Dufaux, and T. Ebrahimi, "Multiview Distributed Video Coding with Encoder Driven Fusion," in Proc. European Conference on Signal Processing (EUSIPCO ''07), Poznan, Poland, 2007(9).
  8. T. Maugey, W. Miled, M. Cagnazzo, and B. Pesquet-Popescu, "Fusion Schemes for Multiview Distributed Video Coding," in Proc. EUSIPCO, Glasgow, Scotland, 2009(8).
  9. A. Elailah, F. Dufaux, J. Farah, M. Cagnazzo, A. Srivastava, and B. Pesquet-Popescu, "Fusion of Global and Local Motion Estimation Using Foreground Objects for Distributed Video Coding," IEEE Trans. Circuits Syst. Video Technol., pp.973-987, 2015(6).
  10. A. Dias, C. Brites, J. Ascenso, and F. Perelra, "SIFT-Based Homographies for Efficient Multiview Distributed Visual Sensing," IEEE Sensors Journal, Vol.15, pp.2643-2656, 2015(5). https://doi.org/10.1109/JSEN.2014.2355914
  11. C. Fehn, "Depth-Image-Based Rendering (DIBR), Compression and Transmission for a New Approach on 3D-TV," Proceeding of the SPIE Stereoscopic Displays and Virtual Reality Systems XI, San Jose, CA, USA, pp.93-104, 2004(1).
  12. "View Synthesis Reference Software (VSRS) 3.5," wg11.sc29.org, 2010(3).