DOI QR코드

DOI QR Code

Improvement of Nutritive Value and In vitro Ruminal Fermentation of Leucaena Silage by Molasses and Urea Supplementation

  • Phesatcha, K. (Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University) ;
  • Wanapat, M. (Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University)
  • Received : 2015.07.11
  • Accepted : 2015.10.06
  • Published : 2016.08.01

Abstract

Leucaena silage was supplemented with different levels of molasses and urea to study its nutritive value and in vitro rumen fermentation efficiency. The ensiling study was randomly assigned according to a $3{\times}3$ factorial arrangement in which the first factor was molasses (M) supplement at 0%, 1%, and 2% of crop dry matter (DM) and the second was urea (U) supplement as 0%, 0.5%, and 1% of the crop DM, respectively. After 28 days of ensiling, the silage samples were collected and analyzed for chemical composition. All the nine Leucaena silages were kept for study of rumen fermentation efficiency using in vitro gas production techniques. The present result shows that supplementation of U or M did not affect DM, organic matter, neutral detergent fiber, and acid detergent fiber content in the silage. However, increasing level of U supplementation increased crude protein content while M level did not show any effect. Moreover, the combination of U and M supplement decreased the content of mimosine concentration especially with M2U1 (molasses 2% and urea 1%) silage. The result of the in vitro study shows that gas production kinetics, cumulation gas at 96 h and in vitro true digestibility increased with the increasing level of U and M supplementation especially in the combination treatments. Supplementation of M and U resulted in increasing propionic acid and total volatile fatty acid whereas, acetic acid, butyric acid concentrations and methane production were not changed. In addition, increasing U level supplementation increased $NH_3$-N concentration. Result from real-time polymerase chain reaction revealed a significant effect on total bacteria, whereas F. succinogenes and R. flavefaciens population while R. albus was not affected by the M and U supplementation. Based on this study, it could be concluded that M and urea U supplementation could improve the nutritive value of Leucaena silage and enhance in vitro rumen fermentation efficiency. This study also suggested that the combination use of M and U supplementation level was at 2% and 1%, respectively.

Keywords

References

  1. Anantasook, N. and M. Wanapat. 2012. Influence of rain tree pod meal supplementation on rice straw based diets using in vitro gas fermentation technique. Asian Australas. J. Anim. Sci. 25:325-334. https://doi.org/10.5713/ajas.2011.11131
  2. AOAC. 1990. Official Methods of Analyses, 15th edn. Association of Official Analytical Chemists, Arlington, VA, USA.
  3. Bansi, H., E. Wina, P. R. Matitaputy, and V. Tufarelli. 2014. Evaluation of Zapoteca tetragona forage as alternative protein source in ruminants' feeding. Ital. J. Anim. Sci. 13:147-150.
  4. Barros-Rodriguez, M., J. Solorio-Sanchez, C. Sandoval-Castro, A. V. Klieve, E. B. Briceno-Poot,L.Ramirez-Aviles, and R. Rojas-Herrera. 2013. Effect of two intake levels of Leucaena leucocephala on rumen function sheep. Trop. Grasslands-Forrajes Tropicales 1:55-57. https://doi.org/10.17138/TGFT(1)55-57
  5. Cazzato, E., V. Laudadio, A. Corleto, and V. Tufarelli. 2011. Effects of harvest date, wilting and inoculation on yield and forage quality of ensiling safflower (Carthamus tinctoriusL.) biomass. J. Sci. Food Agric. 91:2298-2302.
  6. Cone, J. W. and A. H. Van Gelder. 1999. Influence of protein fermentation on gas production profiles. Anim. Feed Sci. Technol. 76:251-264. https://doi.org/10.1016/S0377-8401(98)00222-3
  7. Cudjoe, N. and V. Mlambo. 2014. Buffer nitrogen solubility, in vitro ruminal partitioning of nitrogen and in vitro ruminal biological activity of tannins in leaves of four tree species. J. Anim. Physiol. Anim. Nutr. 98:722-730. https://doi.org/10.1111/jpn.12130
  8. Dalzell, S. A., D. J. Burnett, J. E. Dowsett, V. E. Forbes, and H. M. Shelton. 2012. Prevalence of mimosine and DHP toxicity in cattle grazing Leucaena leucocephala pastures in Queensland, Australia. Anim. Prod. Sci. 52:365-372. https://doi.org/10.1071/AN11236
  9. Galyen, M. 1989. Laboratory procedures in animal nutrition research. New Mexico State University, Las Cruces, NM, USA.
  10. Goel, G., H. P. S. Makkar, and K. Becker. 2008. Changes in microbial community structure, methanogenesis and rumen fermentation in response to saponin-rich fractions from different plant materials. J. Appl. Microbiol.105:770-777. https://doi.org/10.1111/j.1365-2672.2008.03818.x
  11. Hart, K. J., D. R. Yanez-Ruiz, S. M. Duval, N. R. McEwan, and C. J. Newbold. 2008. Plant extracts to manipulate rumen fermentation. Anim. Feed Sci. Technol. 147:8-35. https://doi.org/10.1016/j.anifeedsci.2007.09.007
  12. Koike, S. and Y. Kobayashi. 2001. Develop and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobactor succinogenes, Ruminococcus albus, and Ruminococcus flavefaciens. FEMS Microbiol. Lett. 204:361-366. https://doi.org/10.1111/j.1574-6968.2001.tb10911.x
  13. Kumar, R., M. Singh. 1984. Tannins: their adverse role in ruminant nutrition. J. Agr. Food Chem. 32:447-453. https://doi.org/10.1021/jf00123a006
  14. Makkar, H. P. S., M. Blummel, and K. Becker. 1995. Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and tannins, and their implication in gas production and true digestibility in in vitro techniques. Br. J. Nutr. 73:897-913. https://doi.org/10.1079/BJN19950095
  15. McSweeney, C. S., B. Palmer, D. M. McNeil, and D. O. Krause. 2001. Microbial interactions with tannins: Nutritional consequences for ruminants. Anim. Feed Sci. Technol. 91:83-93. https://doi.org/10.1016/S0377-8401(01)00232-2
  16. Menke, K. H., L. Raab, A. Salewski, H. Steingass, D. Fritz, and W. Schneider. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feedstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. 93:217-222. https://doi.org/10.1017/S0021859600086305
  17. Moss, A. R., J. P. Jouany, and J. Newbold. 2000. Methane production by ruminants: its contribution to global warming. Anim. Res. 49:231-253. https://doi.org/10.1051/animres:2000119
  18. Mathew, S., S. Sagathevan, J. Thomas, and G. Mathen. 1997. An HPLC method for estimation of volatile fatty acids of rumen fluid. Indian J. Anim. Sci. 67:805-807.
  19. Orskov, E. R. and I. McDonal. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92:499-503. https://doi.org/10.1017/S0021859600063048
  20. Salem, A. Z. M., C. S. Zhou, Z. L. Tan, M. Mellado, M. C. Salazar, M. M. M. Y. Elghandopur, and N. E. Odongo. 2013. In vitro ruminal gas production kinetics of four fodder trees ensiled with or without molasses and urea. J. Integr. Agric. 12:1234-1242. https://doi.org/10.1016/S2095-3119(13)60438-4
  21. SAS. 1998. User's Guide: Statistic, Version 6, 12th edn. SAS Inst. Inc., Cary, NC, USA.
  22. Satter, L. D. and L. L. Slyter. 1974. Effect of ammonia concentration on ruminal microbial protein production in vitro. Br. J. Nutr. 32:199-208. https://doi.org/10.1079/BJN19740073
  23. Staples, C. R., G. C. Fahey Jr, L. L. Berger, and R. B. Rindsig. 1981. Evaluation of dairy waste fiber as a roughage source for ruminants. J. Dairy Sci. 64:662-671. https://doi.org/10.3168/jds.S0022-0302(81)82627-6
  24. Steel, R. G. D. and J. H. Torrie. 1980. Principles and Procedures of Statistics. McGraw Hill Book Co., New York, NY, USA.
  25. Sunagawa, K., F. Hongo, Y. Kawashima, and S. Tawata. 1989. The effect of mimosine reduced Leucaena feed on sheep. JPN. J. Zootech. Sci. 60:133-140.
  26. Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  27. Waghorn, G. 2008. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production-progress and challenges. Anim. Feed Sci. Technol. 147:116-139. https://doi.org/10.1016/j.anifeedsci.2007.09.013
  28. Wanapat, M. and A. Cherdthong. 2009. Use of real-time PCR technique in studying rumen cellulolytic bacteria population as affected by level of roughage in Swamp buffalo. Curr.Microbiol. 58:294-299. https://doi.org/10.1007/s00284-008-9322-6
  29. Wanapat, M., S. Kang, P. Khejornsart, and R. Pilajun. 2013. Improvement of whole crop rice silage nutritive value and rumen degradability by molasses and urea supplementation. Trop. Anim. Health Prod. 45:1777-1781. https://doi.org/10.1007/s11250-013-0433-0
  30. Wee, K. L. and S. S. Wang. 1987. Effect of postharvest treatment on the degradation of mimosine in Leucaena leucocephala leaves. J. Sci. Food. Agric. 39:195-201. https://doi.org/10.1002/jsfa.2740390302
  31. Yu, Z. and M. Morrison. 2004. Improved extraction of PCR-quality community DNA from digesta and fecal samples. BioTechniques 36:808-812.

Cited by

  1. Strategic supplementation of cassava top silage to enhance rumen fermentation and milk production in lactating dairy cows in the tropics vol.50, pp.7, 2018, https://doi.org/10.1007/s11250-018-1593-8
  2. Silage review: Animal and human health risks from silage vol.101, pp.5, 2018, https://doi.org/10.3168/jds.2017-13836
  3. Effect of urea and molasses supplementation on quality of cassava top silage vol.27, pp.1, 2016, https://doi.org/10.22358/jafs/85544/2018
  4. Supplemental effect of Chaya (Cnidoscolus aconitifolius) leaf pellet on rumen fermentation, nutrients digestibility and microbial protein synthesis in growing crossbred bulls vol.20, pp.1, 2016, https://doi.org/10.1080/1828051x.2021.1880978
  5. Urea-assisted ensiling process of wilted maize stover for profitable biomethane production vol.757, pp.None, 2016, https://doi.org/10.1016/j.scitotenv.2020.143751
  6. Sunnhemp (Crotalaria juncea, L.) silage can enrich rumen fermentation process, microbial protein synthesis, and nitrogen utilization efficiency in beef cattle crossbreds vol.53, pp.1, 2016, https://doi.org/10.1007/s11250-021-02628-z