References
- AOAC. 1995. Official Methods of Analysis. 16th edn. Association of Official Analytical Chemists, Arlington, VA, USA.
- Attygalle, A. B., C. L. Blankespoor, J. Meinwald, and T. Eisner. 1991. Defensive secretion of Tenebrio molitor (Coleoptera: Tenebrionidae). J. Chem. Ecol. 17:805-809. https://doi.org/10.1007/BF00994202
- Awoniyi, T. A. M., V. A. Aletor, and J. M. AIna. 2003. Performance of broiler-chickens fed on maggot meal in place of fishmeal. Int. J. Poult. Sci. 2:271-274. https://doi.org/10.3923/ijps.2003.271.274
- Bayes-Genis, A., C. A. Conover, and R. S. Schwartz. 2000. The insulin-like growth factor axis: a review of atherosclerosis and restenosis. Circ. Res. 86:125-130. https://doi.org/10.1161/01.RES.86.2.125
- Chen, Z. B. 2012. Analysis for nutritional value of four kinds of insects and use of Tenebrio molitor power in weaning pig production. China Knowledge Resource Integrated Database (CNKI), Shandong Agricultural University, Shandong, China.
- Cromwell, G. L. 1998. Feeding swine. In: Livestock Feeds and Feeding. 4th ed. Prentice-Hall, Upper Saddle River, NJ, USA. 354 p.
- Eggum, B. O. 1970. Blood urea measurement as a technique for assessing protein quality. Br. J. Nutr. 24:983-988. https://doi.org/10.1079/BJN19700101
- Etherton, T. D., J. P. Wiggins, C. M. Evock, C. S. Chung, J. F. Rebhun, P. E. Walton, and N. C. Steele. 1987. Stimulation of pig growth performance by porcine growth hormone: determination of the dose-response relationship. J. Anim. Sci. 64:433-443. https://doi.org/10.2527/jas1987.642433x
- Evans, D. F. and J. Leibholz. 1979. Meat meal in the diet of the early-weaned pig. I. A comparison of meat meal and soya bean meal. Anim. Feed Sci. Technol. 4:33-42. https://doi.org/10.1016/0377-8401(79)90021-X
- Finke, M. D. 2002. Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol. 21:269-285. https://doi.org/10.1002/zoo.10031
- Harikrishnan, R., J. S. Kim, C. Balasundaram, and M. S. Heo. 2012. Dietary supplementation with chitin and chitosan on haematology and innate immune response in Epinephelus bruneus against Philasterides dicentrarchi. Exp. Parasitol. 131:116-124. https://doi.org/10.1016/j.exppara.2012.03.020
- Hernandez, C. 1987. Elaboration of a sweet yellow mealworm T. molitor (Coleoptera: Tenebrionidae). Thesis. University of Quimica, Auton, Mexico.
- Huang, Z. Z. and N. Z. Zhang. 1984. Development of new source of protein feed - rearing maggots. Feed Res. 1987:17-21.
- Huang, R. L., Y. L. Yin, G. Y. Wu, Y. G. Zhang, T. J. Li, L. L. Li, M. X. Li, Z. R. Tang, J. Zhang, B. Wang, J. H. He, and X. Z. Nie. 2005. Effect of dietary oligochitosan supplementation on ileal digestibility of nutrients and performance in broilers. Poult. Sci. 84:1383-1388. https://doi.org/10.1093/ps/84.9.1383
- Hwangbo, J. and E. C. Hong. 2009. Utilization of house flymaggots, a feed supplement in the production of broiler chickens. J. Environ. Biol. 30:609-614.
- Jensen, M. S., S. K. Jensen, and K. Jakobsen. 1997. Development of digestive enzymes in pigs with emphasis on lipolytic activity in the stomach and pancreas. J. Anim. Sci. 75:437-445. https://doi.org/10.2527/1997.752437x
- Kats, L. J., J. L. Nelssen, M. D. Tokach, R. D. Goodband, T. L. Weeden, S. S. Dritz, J. A. Hansen, and K. G. Friesen. 1994. The effects of spray-dried blood meal on growth performance of the early-weaned pig. J. Anim. Sci. 72:2860-2869. https://doi.org/10.2527/1994.72112860x
- Lagunes, L. A. and L. Garcia. 1994. Two Insects Productivity Obtained by Recycling of Organics Made of Animal and Vegetable. Ph. M. Thesis, University of Ciencia, Auton, Mexico.
- Lee, C. G., C. A. Da Silva., J. Y. Lee., D. Hartl, and J. A. Elias. 2008. Chitin regulation of immune responses: an old molecule with new roles. Curr. Opin. Immunol. 20:684-689. https://doi.org/10.1016/j.coi.2008.10.002
- Leskanich, C. O., K. R. Matthews, C. C. Warkup, R. C. Noble, and M. Hazzledine. 1997. The effect of dietary oil containing (n-3) fatty acids on the fatty acid, physiochemical, and organoleptic characteristics of pig meat and fat. J. Anim. Sci. 75:673-683. https://doi.org/10.2527/1997.753673x
- Liu, Y. S., F. B. Wang., J. X. Cui, and L. Zhang. 2010. Recent status and advances on study and utilization of Tenebrio molitor. J. Environ. Entomol. 32:106-114.
- MacEvilly, C. 2000. Bugs in the system. Nutr. Bull. 25:267-268. https://doi.org/10.1046/j.1467-3010.2000.00068.x
- Mahan, D. C. and E. A. Newton. 1993. Evaluation of feed grains with dried skim milk and added carbohydrate sources on weanling pig performance. J. Anim. Sci. 71:3376-3382. https://doi.org/10.2527/1993.71123376x
- Malmolf, K. 1988. Amino acid in farm animal nutrition metabolism, partition and consequences of imbalance. J. Agric. Res. 18:191-193.
- Newton, G. L., C. V. Booram, R. W. Barker, and O. M. Hale. 1977. Dried Hermetia illucens larvae meal as a supplement for swine. J. Anim. Sci. 44:395-400. https://doi.org/10.2527/jas1977.443395x
- Ng, W. K., F. L. Liew, L. P. Ang, and K. W. Wong. 2001. Potential of mealworm (Tenebrio molitor) as an alternative protein source in practical diets for African catfish, Clarias gariepinus. Aquac. Res. 32:273-280. https://doi.org/10.1046/j.1355-557x.2001.00024.x
- Ni, X. J. and G. J. Tang. 1993. Evaluation of optimal silkworm supplementation in suckling piglets diet. ZheJiang J. Anim. Sci. Vet. Med. 3:49-49.
- NRC. 1998. Nutrient Requirements of Swine. 10th Ed. National Academy Press, Washington, DC, USA.
- NRC. 2012. Nutrient Requirements of Swine. 11th Ed. National Academy Press. Washington, DC, USA.
- Overland, M., O. Taugbol, A. Haug, and E. Sundstol. 1996. Effect of fish oil on growth performance, carcass characteristics, sensory parameters, and fatty acid composition in pigs. Acta Agric. Scand. Anim. Sci. 46:11-17.
- Ramos-Elorduy, J., E. A. Gonzalez., A. R. Hernandez, and J. M. Pino. 2002. Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. J. Econ. Entomol. 95:214-220. https://doi.org/10.1603/0022-0493-95.1.214
- Ravzanaadii, N., S. H. Kim, W. H. Choi, S. J. Hong, and N. J. Kim. 2012. Nutritional Value of Mealworm, Tenebrio molitor as Food Source. Int. J. Indust. Entomol. 25:93-98. https://doi.org/10.7852/ijie.2012.25.1.093
- Sanchez-Muros, M. J., F. G. Barroso, and F. Manzano-Agugliaro. 2014. Insect meal as renewable source of food for animal feeding: A review. J. Cleaner Prod. 65:16-27. https://doi.org/10.1016/j.jclepro.2013.11.068
- SAS Institute, 2002. SAS/STAT User's Guide: Version 9.1. SAS Institute, Cary, NC, USA.
- Shen, H., X. L. Pan, and J. G. Wang. 2006. Effect of Tenebrio molitor L. supplementation on growth performance and protein deposition in broilers. Heilongjiang Anim. Vet. Sci. 2006(08):61-62.
- Smith, D. R., D. A. Knabe, and S. B. Smith. 1996. Depression of lipogenesis in swine adipose tissue by specific dietary fatty acids. J. Anim. Sci. 74:975-983. https://doi.org/10.2527/1996.745975x
- Stoner, G. R., G. L. Allee, J. L. Nelssen, M. E. Johnston, and R. D. Goodband. 1990. Effect of select menhaden fish meal in starter diets for pigs. J. Anim. Sci. 68:2729-2735. https://doi.org/10.2527/1990.6892729x
- Téguia, A., M. Mpoame, and J. O. Mba. 2002. The production performance of broiler birds as affected by the replacement of fish meal by maggot meal in the starter and finisher diets. Tropicultura 20:187-192.
- Van Oeckel, M. J., M. Casteels, N. Warnants, L. Van Damme, and Ch. V. Boucque. 1996. Omega-3 fatty acids in pig nutrition: implications for the intrinsic and sensory quality of the meat. Meat Sci. 44:55-63. https://doi.org/10.1016/S0309-1740(96)00077-0
- Wang, X. P., C. L. Lei, and C. Y. Niu. 2001. The defensive secretion from insects. Institute of insect sources, Huazhong Agricultural University, Wuhan, China.
- Yuanqing, X., S. Binlin, G. Yiwei, L. Tiyu, L. Junliang, Y. Ping, and G. Xiaoyu. 2013. Effects of chitosan on the development of immune organs and gastrointestinal tracts in weaned piglets. Feed Ind. 3:008.
- Zhang, J. H. and E. F. Zhou. 2002. Feed Resource and Utilization. China agriculture press, BeiJing, China.
Cited by
- Consideration of insects as a source of dietary protein for human consumption vol.75, pp.12, 2017, https://doi.org/10.1093/nutrit/nux057
- Chitin digestibility is dependent on feeding behaviors, which determine acidic chitinase mRNA levels in mammalian and poultry stomachs vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-19940-8
- N Balance Studies Emphasize the Superior Protein Quality of Pig Diets at High Inclusion Level of Algae Meal (Spirulina platensis) or Insect Meal (Hermetia illucens) when Adequate Amino Acid Supplementation Is Ensured vol.8, pp.10, 2018, https://doi.org/10.3390/ani8100172
- Insect meals in fish nutrition pp.17535123, 2019, https://doi.org/10.1111/raq.12281
- ) vol.49, pp.6, 2018, https://doi.org/10.1111/are.13677
- Partially defatted black soldier fly larva meal inclusion in piglet diets: effects on the growth performance, nutrient digestibility, blood profile, gut morphology and histological features vol.10, pp.1, 2019, https://doi.org/10.1186/s40104-019-0325-x
- Sustainable farming of the mealworm Tenebrio molitor for the production of food and feed vol.72, pp.9, 2016, https://doi.org/10.1515/znc-2017-0033
- Protease resistance of porcine acidic mammalian chitinase under gastrointestinal conditions implies that chitin-containing organisms can be sustainable dietary resources vol.7, pp.None, 2016, https://doi.org/10.1038/s41598-017-13526-6
- Insect protein in animal nutrition vol.59, pp.11, 2019, https://doi.org/10.1071/an19255
- Insects: a novel animal-feed protein source for the Australian market vol.59, pp.11, 2016, https://doi.org/10.1071/an19301
- Animals Fed Insect-Based Diets: State-of-the-Art on Digestibility, Performance and Product Quality vol.9, pp.4, 2019, https://doi.org/10.3390/ani9040170
- 이유자돈 사료 내 동애등에(Hermetia illucens)의 첨가수준이 사양성적, 영양소소화율 및 경제성에 미치는 영향 vol.20, pp.9, 2016, https://doi.org/10.5762/kais.2019.20.9.255
- Locusta migratoria extruded meal in young steers diet: evaluation of growth performance, blood indices and meat traits of Calves Kasakh white-headed breed vol.48, pp.1, 2020, https://doi.org/10.1080/09712119.2020.1802282
- Effects of mealworm (Tenebrio molitor) larvae hydrolysate on nutrient ileal digestibility in growing pigs compared to those of defatted mealworm larvae meal, fermented poultry by-product, and hydrolyz vol.33, pp.3, 2016, https://doi.org/10.5713/ajas.19.0793
- Effects of mealworm (Tenebrio molitor) larvae hydrolysate on nutrient ileal digestibility in growing pigs compared to those of defatted mealworm larvae meal, fermented poultry by-product, and hydrolyz vol.33, pp.3, 2016, https://doi.org/10.5713/ajas.19.0793
- Supplementation of Sulfur-Containing Amino Acids or Essential Amino Acids Does Not Reverse the Hepatic Lipid-Lowering Effect of a Protein-Rich Insect Meal in Obese Zucker Rats vol.12, pp.4, 2016, https://doi.org/10.3390/nu12040987
- Mealworm ( Tenebrio molitor Larvae) as an Alternative Protein Source for Monogastric Animal: A Review vol.10, pp.11, 2016, https://doi.org/10.3390/ani10112068
- Gastric canthariasis caused by invasion of mealworm beetle larvae in weaned pigs in large-scale farming vol.16, pp.None, 2016, https://doi.org/10.1186/s12917-020-02657-0
- Comprehensive evaluation of the metabolic effects of insect meal from Tenebrio molitor L. in growing pigs by transcriptomics, metabolomics and lipidomics vol.11, pp.1, 2016, https://doi.org/10.1186/s40104-020-0425-7
- 昆虫の飼料利用に関する研究動向と今後の課題 vol.92, pp.3, 2016, https://doi.org/10.2508/chikusan.92.265
- Insects: A Potential Source of Protein and Other Nutrients for Feed and Food vol.9, pp.1, 2021, https://doi.org/10.1146/annurev-animal-021419-083930
- Effect of Tenebrio molitor larvae meal on the antioxidant status and stress response pathways in tissues of growing pigs vol.75, pp.4, 2016, https://doi.org/10.1080/1745039x.2021.1950106
- Beyond the protein concept: health aspects of using edible insects on animals vol.7, pp.5, 2021, https://doi.org/10.3920/jiff2020.0077
- Use of insect products in pig diets vol.7, pp.5, 2016, https://doi.org/10.3920/jiff2020.0091
- Mealworm (Tenebrio molitor): Potential and Challenges to Promote Circular Economy vol.11, pp.9, 2016, https://doi.org/10.3390/ani11092568
- Mouse Acidic Chitinase Effectively Degrades Random-Type Chitosan to Chitooligosaccharides of Variable Lengths under Stomach and Lung Tissue pH Conditions vol.26, pp.21, 2016, https://doi.org/10.3390/molecules26216706
- Piglets can secrete acidic mammalian chitinase from the pre weaning stage vol.11, pp.1, 2016, https://doi.org/10.1038/s41598-020-80368-0