DOI QR코드

DOI QR Code

Pharmacokinetic Interaction of Chrysin with Caffeine in Rats

  • 투고 : 2015.12.04
  • 심사 : 2015.12.29
  • 발행 : 2016.07.01

초록

Pharmacokinetic interaction of chrysin, a flavone present in honey, propolis and herbs, with caffeine was investigated in male Sprague-Dawley rats. Because chrysin inhibited CYP1A-selective ethoxyresorufin O-deethylase and methoxyresorufin O-demethylase activities in enriched rat liver microsomes, the pharmacokinetics of caffeine, a CYP 1A substrate, was studied following an intragastric administration with 100 mg/kg chrysin. In addition to the oral bioavailability of chrysin, its phase 2 metabolites, chrysin sulfate and chrysin glucuronide, were determined in rat plasma. As results, the pharmacokinetic parameters for caffeine and its three metabolites (i.e., paraxanthine, theobromine and theophylline) were not changed following chrysin treatment in vivo, despite of its inhibitory effect on CYP 1A in vitro. The bioavailability of chrysin was found to be almost zero, because chrysin was rapidly metabolized to its sulfate and glucuronide conjugates in rats. Taken together, it was concluded that the little interaction of chrysin with caffeine might be resulted from the rapid metabolism of chrysin to its phase 2 metabolites which would not have inhibitory effects on CYP enzymes responsible for caffeine metabolism.

키워드

참고문헌

  1. Blank, J. A., Tucker, A. N., Sweatlock, J., Gasiewicz, T. A. and Luster, M. I. (1987) alpha-Naphthoflavone antagonism of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced murine lymphocyte ethoxyresorufin-Odeethylase activity and immunosuppression. Mol. Pharmacol. 32, 169-172.
  2. Breinholt, V., Lauridsen, S. T. and Dragsted, L. O. (1999) Differential effects of dietary flavonoids on drug metabolizing and antioxidant enzymes in female rat. Xenobiotica 29, 1227-1240. https://doi.org/10.1080/004982599237903
  3. Brown, E., Hurd, N. S., McCall, S. and Ceremuga, T. E. (2007) Evaluation of the anxiolytic effects of chrysin, a Passiflora incarnata extract, in the laboratory rat. AANA J. 75, 333-337.
  4. Chiou, W. L. (1978) Critical evaluation of the potential error in pharmacokinetic studies of using the linear trapezoidal rule method for the calculation of the area under the plasma level--time curve. J. Pharmacokinet. Biopharm. 6, 539-546. https://doi.org/10.1007/BF01062108
  5. Cho, H., Yun, C. W., Park, W. K., Kong, J. Y., Kim, K. S., Park, Y., Lee, S. and Kim, B. K. (2004) Modulation of the activity of proinflammatory enzymes, COX-2 and iNOS, by chrysin derivatives. Pharmacol. Res. 49, 37-43. https://doi.org/10.1016/S1043-6618(03)00248-2
  6. Choi, E. J., Bae, S. H., Park, J. B., Kwon, M. J., Jang, S. M., Zheng, Y. F., Lee, Y. S., Lee, S. J. and Bae, S. K. (2013) Simultaneous quantification of caffeine and its three primary metabolites in rat plasma by liquid chromatography-tandem mass spectrometry. Food Chem. 141, 2735-2742. https://doi.org/10.1016/j.foodchem.2013.05.069
  7. Galijatovic, A., Otake, Y., Walle, U. K. and Walle, T. (1999) Extensive metabolism of the flavonoid chrysin by human Caco-2 and Hep G2 cells. Xenobiotica 29, 1241-1256. https://doi.org/10.1080/004982599237912
  8. Hodek, P., Trefil, P. and Stiborova, M. (2002) Flavonoids-potent and versatile biologically active compounds interacting with cytochromes P450. Chem. Biol. Interact. 139, 1-21. https://doi.org/10.1016/S0009-2797(01)00285-X
  9. Hsu, C. Y., Chiang, W. C., Weng, T. I., Chen, W. J. and Yuan, A. (2004) Laryngeal edema and anaphalactic shock after topical propolis use for acute pharyngitis. Am. J. Emerg. Med. 22, 432-433. https://doi.org/10.1016/j.ajem.2004.06.007
  10. Kellis, J. T., Jr. and Vickery, L. E. (1984) Inhibition of human estrogen synthetase (aromatase) by flavones. Science 225, 1032-1034. https://doi.org/10.1126/science.6474163
  11. Kim, N. H., Lee, S., Kang, M. J., Jeong, H. G., Kang, W. and Jeong, T. C. (2014) Protective effects of diallyl sulfide against thioacetamideinduced toxicity: a possible role of cytochrome P450 2E1. Biomol. Ther. (Seoul) 22, 149-154. https://doi.org/10.4062/biomolther.2014.016
  12. Koop, D. R. (1986) Hydroxylation of p-nitrophenol by rabbit ethanolinducible cytochrome P-450 isozyme 3a. Mol. Pharmacol. 29, 399-404.
  13. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275.
  14. Lubet, R. A., Mayer, R. T., Cameron, J. W., Nims, R. W., Burke, M. D., Wolff, T. and Guengerich, F. P. (1985) Dealkylation of pentoxyresorufin: a rapid and sensitive assay for measuring induction of cytochrome(s) P-450 by phenobarbital and other xenobiotics in the rat. Arch. Biochem. Biophys. 238, 43-48. https://doi.org/10.1016/0003-9861(85)90138-9
  15. Mandel, H. G. (2002) Update on caffeine consumption, disposition and action. Food Chem. Toxicol. 40, 1231-1234. https://doi.org/10.1016/S0278-6915(02)00093-5
  16. Moon, J. Y., Lee, D. W. and Park, K. H. (1998) Inhibition of 7-ethoxycoumarin O-deethylase activity in rat liver microsomes by naturally occurring flavonoids: structure-activity relationships. Xenobiotica 28, 117-126. https://doi.org/10.1080/004982598239623
  17. Nash, T. (1953) The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem. J. 55, 416-421. https://doi.org/10.1042/bj0550416
  18. Noh, K., Seo, Y. M., Lee, S. K., Bista, S. R., Kang, M. J., Jahng, Y., Kim, E., Kang, W. and Jeong, T. C. (2011) Effects of rutaecarpine on the metabolism and urinary excretion of caffeine in rats. Arch. Pharm. Res. 34, 119-125. https://doi.org/10.1007/s12272-011-0114-3
  19. Noh, K., Nepal, M. R., Jeong, K. S., Kim, S. A., Um, Y. J., Seo, C. S., Kang, M. J., Park, P. H., Kang, W., Jeong, H. G., Jeong, T. C. (2015) Effects of baicalin on oral pharmacokinetics of caffeine in rats. Biomol. Ther. (Seoul) 23, 201-206. https://doi.org/10.4062/biomolther.2014.134
  20. Pushpavalli, G., Kalaiarasi, P., Veeramani, C. and Pugalendi, K. V. (2010) Effect of chrysin on hepatoprotective and antioxidant status in D-galactosamine-induced hepatitis in rats. Eur. J. Pharmacol. 631, 36-41. https://doi.org/10.1016/j.ejphar.2009.12.031
  21. Shin, H. C., Kim, H. R., Cho, H. J., Yi, H., Cho, S. M., Lee, D. G., Abd El-Aty, A. M., Kim, J. S., Sun, D. and Amidon, G. L. (2009) Comparative gene expression of intestinal metabolizing enzymes. Biopharm. Drug Dispos. 30, 411-421. https://doi.org/10.1002/bdd.675
  22. Siess, M. H., Leclerc, J., Canivenc-Lavier, M. C., Rat, P. and Suschetet, M. (1995) Heterogenous effects of natural flavonoids on monooxygenase activities in human and rat liver microsomes. Toxicol. Appl. Pharmacol. 130, 73-78. https://doi.org/10.1006/taap.1995.1010
  23. Siess, M.-H., Le Bon, A.-M., Canivenc-Lavier, M.-C., Amiot, M.-J., Sabatier, S., Aubert, S. Y. and Suschetet, M. (1996) Flavonoids of honey and propolis: characterization and effects on hepatic drugmetabolizing enzymes and benzo[a]pyrene-DNA binding in rats. J. Agric. Food Chem. 44, 2297-2301. https://doi.org/10.1021/jf9504733
  24. Tsai, Y. C., Wang, Y. H., Liou, C. C., Lin, Y. C., Huang, H. and Liu, Y. C. (2012) Induction of oxidative DNA damage by flavonoids of propolis: its mechanism and implication about antioxidant capacity. Chem. Res. Toxicol. 25, 191-196. https://doi.org/10.1021/tx200418k
  25. Tsujimoto, M., Horie, M., Honda, H., Takara, K. and Nishiguchi, K. (2009) The structure-activity correlation on the inhibitory effects of flavonoids on cytochrome P450 3A activity. Biol. Pharm. Bull. 32, 671-676. https://doi.org/10.1248/bpb.32.671
  26. Villar, I. C., Jimenez, R., Galisteo, M., Garcia-Saura, M. F., Zarzuelo, A. and Duarte, J. (2002) Effects of chronic chrysin treatment in spontaneously hypertensive rats. Planta Med. 68, 847-850. https://doi.org/10.1055/s-2002-34400
  27. Walle, T., Otake, Y., Galijatovic, A., Ritter, J. K. and Walle, U. K. (2000) Induction of UDP-glucuronosyltransferase UGT1A1 by the flavonoid chrysin in the human hepatoma cell line hep G2. Drug Metab. Dispos. 28, 1077-1082.
  28. Walle, T., Otake, Y., Brubaker, J. A., Walle, U. K. and Halushka, P. V. (2001) Disposition and metabolism of the flavonoid chrysin in normal volunteers. Br. J. Clin. Pharmacol. 51, 143-146. https://doi.org/10.1111/j.1365-2125.2001.01317.x
  29. Walle, U. K., Galijatovic, A. and Walle, T. (1999) Transport of the flavonoid chrysin and its conjugated metabolites by the human intestinal cell line Caco-2. Biochem. Pharmacol. 58, 431-438. https://doi.org/10.1016/S0006-2952(99)00133-1
  30. Wen, Z., Dumas, T. E., Schrieber, S. J., Hawke, R. L., Fried, M. W. and Smith, P. C. (2008) Pharmacokinetics and metabolic profile of free, conjugated, and total silymarin flavonolignans in human plasma after oral administration of milk thistle extract. Drug Metab. Dispos. 36, 65-72.
  31. Wolfman, C., Viola, H., Paladini, A., Dajas, F. and Medina, J. H. (1994) Possible anxiolytic effects of chrysin, a central benzodiazepine receptor ligand isolated from Passiflora coerulea. Pharmacol. Biochem. Behav. 47, 1-4.

피인용 문헌

  1. Sodium Oleate-Based Nanoemulsion Enhances Oral Absorption of Chrysin through Inhibition of UGT-Mediated Metabolism vol.14, pp.9, 2017, https://doi.org/10.1021/acs.molpharmaceut.6b00851
  2. Low-Dose Bisphenol A Increases Bile Duct Proliferation in Juvenile Rats: A Possible Evidence for Risk of Liver Cancer in the Exposed Population? vol.25, pp.5, 2017, https://doi.org/10.4062/biomolther.2017.148
  3. Measurement of caffeine and its three primary metabolites in human plasma by HPLC-ESI-MS/MS and clinical application vol.31, pp.6, 2017, https://doi.org/10.1002/bmc.3900
  4. -Succinyl Macrolactin A Based on Allometric Scaling of Data from Mice, Rats, and Dogs vol.25, pp.6, 2017, https://doi.org/10.4062/biomolther.2016.192
  5. A Naturally Occurring Flavone (Chrysin): Chemistry, Occurrence, Pharmacokinetic, Toxicity, Molecular Targets and Medicinal Properties vol.8, pp.4, 2018, https://doi.org/10.1080/22311866.2018.1498750
  6. Halogenated Chrysins Inhibit Dengue and Zika Virus Infectivity vol.7, pp.None, 2016, https://doi.org/10.1038/s41598-017-14121-5
  7. Impact of chrysin on the molecular mechanisms underlying diabetic complications vol.234, pp.10, 2016, https://doi.org/10.1002/jcp.28488
  8. Pharmacokinetics of B-Ring Unsubstituted Flavones vol.11, pp.8, 2019, https://doi.org/10.3390/pharmaceutics11080370
  9. Chrysin reduces the activity and protein level of mature forms of sterol regulatory element-binding proteins vol.83, pp.9, 2019, https://doi.org/10.1080/09168451.2019.1608806
  10. The Phenolic Compounds, Metabolites, and Antioxidant Activity of Propolis Extracted by Ultrasound‐Assisted Method vol.84, pp.12, 2016, https://doi.org/10.1111/1750-3841.14934
  11. Effects of Chrysin and Its Major Conjugated Metabolites Chrysin-7-Sulfate and Chrysin-7-Glucuronide on Cytochrome P450 Enzymes and on OATP, P-gp, BCRP, and MRP2 Transporters vol.48, pp.10, 2020, https://doi.org/10.1124/dmd.120.000085
  12. Regulation of Nrf2/ARE Pathway by Dietary Flavonoids: A Friend or Foe for Cancer Management? vol.9, pp.10, 2016, https://doi.org/10.3390/antiox9100973
  13. Drug-herb interactions between Scutellaria baicalensis and pharmaceutical drugs: Insights from experimental studies, mechanistic actions to clinical applications vol.138, pp.None, 2016, https://doi.org/10.1016/j.biopha.2021.111445
  14. Developing nutritional component chrysin as a therapeutic agent: Bioavailability and pharmacokinetics consideration, and ADME mechanisms vol.142, pp.None, 2021, https://doi.org/10.1016/j.biopha.2021.112080