References
- Amade, P., Charroin, G., Baby, C. and Vacelet, J. (1987) Antimicrobial activity of marine sponges of Mediterranean. Sea. Mar. Biol. 94, 271-275. https://doi.org/10.1007/BF00392940
- Amade, P. H., Pesando, D. and Chevolot, L. (1982) Antimicrobial activities of marine from French Polynesia and Brittany. Mar. Biol. 70, 223-228. https://doi.org/10.1007/BF00396840
- Amigo, M., Terencio, M. C., Paya, M., Iodice, C. and De Rosa, S. (2007) Synthesis and evaluation of diverse thio avarol derivatives as potential UVB photoprotective candidates. Bioorg. Med. Chem. Lett. 17, 2561-2565. https://doi.org/10.1016/j.bmcl.2007.02.007
- Ang, K. K., Holmes, M. J. and Kara, U. A. (2001) Immunemediated parasite clearance in mice infected with Plasmodium berghei following treatment with manzamine A. Parasitol. Res. 87, 715-721. https://doi.org/10.1007/s004360000366
- Arimoto, H., Hayakawa, I., Kuramoto, M. and Uemura, D. (1998) Absolute stereochemistry of halichlorine; a potent inhibitor of VCAM-1 induction. Tetrahedron Lett. 39, 861-862. https://doi.org/10.1016/S0040-4039(97)10714-6
- Ashok, P., Ganguly, S. and Murugesan S. (2014) Manzamine alkaloids:isolation, cytotoxicity, antimalarial activity and SAR studies. Drug Discovr. Today 19, 1781-1791. https://doi.org/10.1016/j.drudis.2014.06.010
-
Aviles, E. and Rodriguez, A. D. (2010) Monamphilectine A, a Potent Antimalarial
${\beta}$ -Lactam from Marine Sponge Hymeniacidon sp:Isolation, Structure, Semisynthesis, and Bioactivity. Org. Lett. 12, 5290-5293. https://doi.org/10.1021/ol102351z - Baird, J. K. (2013) Evidence and implications of mortality associated with acute Plasmodium vivax malaria. Clin. Microbiol. Rev. 26, 36-57. https://doi.org/10.1128/CMR.00074-12
- Barrese, V. and Taglialatela, M. (2013) New advances in beta-blocker therapy in heart failure. Front. Physiol. 4, 323.
- Bergmann, W. and Feeney, R. J. (1950) The isolation of a new thymine pentoside from sponges. J. Am. Chem. Soc. 72, 2809-2810.
- Bergmann, W. and Feeney, R. J. (1951) Contribution to the study of marine products. J. Org. Chem. 16, 981-987. https://doi.org/10.1021/jo01146a023
- Bergmann, W. and Swift, A. N. (1951) Contributions to the study of marine products. XXX. Component acids of lipids sponges. I. J. Org. Chem. 16, 1206-1221. https://doi.org/10.1021/jo50002a005
- Blackburn, C. L., Hopmann, C., Sakowicz, R., Berdelis, M, S., Goldstein, L. S. B. and Faulkner, D. J. (1999) Adociasulfates 1-6, inhibitors of kinesin motor proteins from the sponge Haliclona (aka Adocia) sp. J. Org. Chem. 64, 5565-5570. https://doi.org/10.1021/jo9824448
- Blunt, J. W., Copp, B. R., Keyzers, R. A., Munroa, M. H. and Prinsep, M. R. (2013) Marine natural products. Nat. Prod. Rep. 30, 237-323. https://doi.org/10.1039/C2NP20112G
- Blunt, J. W., Copp, B. R., Munro, M. H., Northcote, P. T. and Prinsep, M. R. (2005) Marine natural products. Nat. Prod. Rep. 22, 15-61. https://doi.org/10.1039/b415080p
- Blunt, J. W., Copp, B. R., Munro, M. H., Northcote, P. T. and Prinsep, M. R. (2006) Marine natural products. Nat. Prod. Rep. 23, 26-78. https://doi.org/10.1039/b502792f
- Boonlarppradab, C. and Faulkner, D. J. (2007) Eurysterols A and B, cytotoxic and antifungal steroidal sulfates from a marine sponge of the genus Euryspongia. J. Nat. Prod. 70, 846-848. https://doi.org/10.1021/np060472c
- Borchard, U. (1998) Pharmacological properties of b-adrenoreceptor blocking drugs. J. Clin. Basic Cardiol. 1, 5-9.
- Bradshaw, D., Hill, C. H., Nixon, J. S. and Wilkinson, S. E. (1993) Therapeutic potential of protein kinase C inhibitors. Agents Actions 38, 135-147. https://doi.org/10.1007/BF02027225
- Brazilian Health Ministry (2002) Epidemiological survey of malaria in Brazil, Funasa, Brasilia. Available from: http://www.funasa.gov.br/.
- Burkholder, P. R. and Ruetzler, K. (1969) Antimicrobial activity of some marine sponges. Nature 222, 983-984. https://doi.org/10.1038/222983a0
- Capon, R. J., Skene, C., Lacey, E., Gill, J. H., Wadsworth, D. and Friedel, T. (1999) Geodin A magnesium salt: a novel nematocide from a southern Australian marine sponge, Geodia. J. Nat. Prod. 62, 1256-1259. https://doi.org/10.1021/np990144v
- Capon, R. J., Vuong, D., McNally, M., Peterle, T., Trotter, N., Lacey, E. and Gill, J. H. (2005) (+)-Echinobetaine B: isolation, structure elucidation, synthesis and preliminary SAR studies on a new nematocidal betaine from a southern Australian marine sponge, Echinodictyum sp. Org Biomol. Chem. 3, 118-122. https://doi.org/10.1039/b414839h
- Caraballo, H. and King, K. (2014) Emergency department management of mosquito-borne illness: malaria, dengue, and west nile virus. Emerg. Med. Pract. 16, 1-23.
- Carroll, J., Johnsson, E. N., Ebel, R., Hartman, M. S., Holman, T. R. and Crews, P. (2001) Probing sponge-derived terpenoids for human 15-L-lipoxygenase inhibitors. J. Org. Chem. 66, 6847-6851. https://doi.org/10.1021/jo015784t
- Chackalamannil, S. and Xia, Y. (2006) Thrombin receptor (PAR-1) antagonists as novel antithrombotic agents. Expert Opin. Ther. Pat. 16, 493-505. https://doi.org/10.1517/13543776.16.4.493
- Cheng, S., Wen, Z., Chiou, S., Hsu, C., Wang, S., Dai, C., Chiang, M. Y. and Duh, C. (2008) Durumolides A-E, anti-inflammatory and antibacterial cembranolides from the soft coral Lobophytum durum. Tetrahedron 64, 9698-9704. https://doi.org/10.1016/j.tet.2008.07.104
- Costantino, V., Fattorusso, E., Mangoni, A., Di Rosa, M. and Ianaro, A. (1999) Glycolipids from sponges, VII: simplexides, novel immunosuppressive glycolipids from the Caribbean sponge Plakortis simplex. Bioorg. Med. Chem. Lett. 9, 271-276. https://doi.org/10.1016/S0960-894X(98)00719-7
- Cutignano, A., Bifulco, G., Bruno, I., Casapullo, A., Gomez-Paloma, L. and Riccio, R. (2000) Dragmacidin F: A New Antiviral Bromoindole Alkaloid from the Mediterranean Sponge Halicortex sp. Tetrahe-dron 56, 3743-3748. https://doi.org/10.1016/S0040-4020(00)00281-7
- D Ambrosio, M., Guerriero, A., Deharo, E., Debitus, C., Munoz, V. and Pietra, F. (1998) New types of potentially antimalarial agents: epidioxy-substituted norditerpene and norsesterpenes from the marine sponge Diacarnuslevii. Helv. Chim. Acta 81, 1285-1292. https://doi.org/10.1002/hlca.19980810539
- de Almeida Leone, P., Redburn, J., Hooper, J. N. and Quinn, R. J. (2000) Polyoxygenated dysidea sterols that inhibit the binding of [I125] IL-8 to the human recombinant IL-8 receptor type A. J. Nat. Prod. 63, 694-697. https://doi.org/10.1021/np9904657
- De Clercq, E. (2002) New anti-HIV agents and targets. Med. Res. Rev. 22, 531-565. https://doi.org/10.1002/med.10021
- De Clercq, E. (2004) Antiviral drugs in current clinical use. J. Clin. Virol. 30, 115-133. https://doi.org/10.1016/j.jcv.2004.02.009
- Dennedy, M. C., Houlihan, D. D., McMillan, H. and Morrison, J. J. (2002) b2- and b3-Adrenoreceptor agonists: human myometrial selectivity and effects on umbilical artery tone. Am. J. Obstet. Gynecol. 187, 641-647. https://doi.org/10.1067/mob.2002.125277
- de Silva, E. D. and Scheuer, P. J. (1980) Manoalide, an antibiotic sesterterpenoid from the marine sponge luffariella variabilis (polejaeff). Tetrahedron. Lett. 21, 1611-1614. https://doi.org/10.1016/S0040-4039(00)77766-5
- Donia, M. and Hamann, M. T. (2003) Marine natural products and their potential applications as anti-infective agents. Lancet Infect. Dis. 3, 338-348. https://doi.org/10.1016/S1473-3099(03)00655-8
- Dunbar, D. C., Rimoldi, J. M., Clark, A. M., Kelly, M. and Hamann, M. T. (2000) Anti-cryptococcal and nitric oxide synthase inhibitory imidazole alkaloids from the calcareous sponge Leucetta cf chagosensis. Tetrahedron 56, 8795-8798. https://doi.org/10.1016/S0040-4020(00)00821-8
- Ebada, S. S., Wray, V., de Voogd, N. J., Deng, Z., Lin, W. and Proksch, P. (2009) Two new jaspamide derivatives from the marine sponge Jaspis splendens. Mar. Drugs 7, 435-444. https://doi.org/10.3390/md7030435
- Edgar, V. A., Cremaschi, G. A., Sterin-Borda, L. and Genaro, A. M. (2002) Altered expression of autonomic neurotransmitter receptors and proliferative responses in lymphocytes from a chronic mild stress model of depression: effects of fluoxetine. Brain Behav. Immun. 16, 333-350. https://doi.org/10.1006/brbi.2001.0632
- Elhady, S. S., El-Halawany, A. M., Alahdal, A. M., Hassanean, H. A. and Ahmed, S. A. (2016) A new bioactive metabolite isolated from the red sea marine sponge Hyrtios erectus. Molecules 21, 82. https://doi.org/10.3390/molecules21010082
- Elyakov, G. B., Kuznetsova, T., Mikhailov, V. V., Maltsev, I. I., Voinov, V. G. and Fedoreyev, S. A. (1991) Brominated diphenyl ethers from a marine bacterium associated with the sponge Dysidea sp. Experientia 47, 632-633. https://doi.org/10.1007/BF01949894
- Faulkner, D. J. (2000) Marine natural products. Nat. Prod. Rep. 17, 7-55. https://doi.org/10.1039/a809395d
- Faulkner, D. J. (2001) Marine natural products. Nat. Prod. Rep. 18, 1-49. https://doi.org/10.1039/b006897g
- Faulkner, D. J. (2002) Marine natural products. Nat. Prod. Rep. 19, 1-48.
- Fedoreev, S. A., Prokof'eva, N. G., Denisenko, V. A. and Rebachuk, N. M. (1988) Cytotoxic activity of aaptamines from suberitid marine sponges. Pharm. Chem. J. 22, 615-618. https://doi.org/10.1007/BF00763625
- Ford, P. W., Gustafson, K. R., McKee, T. C., Shigematsu, N., Maurizi, L. K., Pannell, L. K., Williams, D. E., De Silva, E. D., Lassota, P., Alien, T. M., Van Soest, R., Andersen, R. J. and Boyd, M. R. (1999) Papuamides A-D, HIV-inhibitory and cytotoxic depsipeptides from the sponges Theonella mirabilis and Theonella swinhoei collected in Papua New Guinea. J. Am. Chem. Soc. 121, 5899-5909. https://doi.org/10.1021/ja990582o
- Frakes, M. A. (2001) Muscle relaxant choices for rapid sequence induction. Air Med. J. 20, 20-21. https://doi.org/10.1067/mmj.2001.116992
- Gafni, J., Munsch, J. A., Lam, T. H., Catlin, M. C., Costa, L. G., Molinski, T. F. and Pessah, I. N. (1997) Xestospongins: potent membrane permeable blockers of the inositol 1,4,5-triphosphate receptor. Neuron 19, 723-733. https://doi.org/10.1016/S0896-6273(00)80384-0
- Garcia-Ruiz, J. C., Amutio, E. and Ponton, J. (2004) Invasive fungal infection in immunocompromised patients. Rev. Iberoam. Micol. 21, 55-62.
- Gaspar, H., Santos, S., Carbone, M., Rodrigues, A. S., Rodrigues, A. I., Uriz, M. J., Savluchinske Feio, S. M., Melck, D., Humanes, M. and Gavagnin, M. (2008) Isomeric furanosesquiterpenes from the Portuguese marine sponge Fasciospongia sp. J. Nat. Prod. 71, 2049-2052. https://doi.org/10.1021/np800346c
- Giusiano, G., Mangiaterra, M., Rojas, F. and Gamez, V. (2004) Yeasts species distribution in Neonatal Intensive Care Units in northeast Argentina. Mycoses 47, 300-303. https://doi.org/10.1111/j.1439-0507.2004.00993.x
- Giusiano, G., Mangiaterra, M., Rojas, F. and Gamez, V. (2005) Azole Resistance in Neonatal Intensive Care Units in Argentina. J. Chemother. 17, 347-350. https://doi.org/10.1179/joc.2005.17.3.347
- Greve, H., Meis, S., Kassack, M. U., Kehraus, S., Krick, A., Wright, A. D. and Konig, G. M. (2007) New iantherans from the marine sponge Ianthella quadrangulata: novel agonists of the P2Y(11) receptor. J. Med. Chem. 50, 5600-5607. https://doi.org/10.1021/jm070043r
- Griffith, O. W. and Gross, S. S. (1996) Inhibitors of nitric oxide synthases. In Methods in nitric oxide research (J. Stamler and M. Feelish, Ed.), pp. 187-208. Wiley & Sons, New York.
- Grimwood, K. and Lambert, S. B. (2009) Rotavirus vaccines: opportunities and challenges. Hum. Vaccin. 5, 57-69. https://doi.org/10.4161/hv.5.2.6924
- Hadas, E., Shpigel, M. and Ilan, M. (2009) Particulate organic matter as a food source for a coral reef sponge. J. Exp. Biol. 212, 3643-3650. https://doi.org/10.1242/jeb.027953
- Hertiani, T., Edrada-Ebel, R., Ortlepp, S., van Soest, R. W., de Voogd, N. J., Wray, V., Hentschel, U., Kozytska, S., Muller, W. E. and Proksch, P. (2010) From anti-fouling to biofilm inhibition: New cytotoxic secondary metabolites from two Indonesian Agelas sponges. Bioorg. Med. Chem. 18, 1297-1311. https://doi.org/10.1016/j.bmc.2009.12.028
- Hibbs, R. E. and Zambon, A. C. (2011) Control of muscle spasms and rigidity. Agents acting at the neuromuscular junction and autonomic ganglia. In Goodman & Gilman's the pharmacological basis of therapeutics (L. L. Brunton, B. A. Chabner, B. C. Knollman, Ed.), pp. 266-276. McGraw-Hill, New York.
- Hill, R. T., Hamann, M., Peraud, O. and Kasanah, N., inventors; University of Maryland Biotechnology Institute, assignee. Manzamineproducing actinomycetes. United States patent US 20050244938 A1. 2005 Nov 3.
- Hood, K. A., West, L. M., Rouwe, B., Northocote, P. T., Berridge, M. V., Wakefield, S. J. and Miller, J. H. (2002) Peloruside A, a novel antimitotic agent with paclitaxel-like microtubule-stabilizing activity. Cancer Res. 62, 3356-3360.
- Hooper, J. N. A. and van Soest, R. W. M. (2002) Systema porifera: a guide to the classification of sponges. Kluwer Academic/Plenum Publishers, New York.
- Hu, G. P., Yuan, J., Sun, L., She, Z. G., Wu, J. H., Lan, X. J., Zhu, X., Lin, Y. C. and Chen, S. P. (2011) Statistical research on marine natural products based on data obtained between 1985 and 2008. Mar. Drugs 9, 514-525. https://doi.org/10.3390/md9040514
- Hua, H. M., Peng, J., Fronczek, F. R., Kelly, M. and Hamann, M. T. (2004) Crystallographic and NMR studies of antiinfective tricyclic guanidine alkaloids from the sponge Monanchora unguifera. Bioorg. Med. Chem. 12, 6461-6464. https://doi.org/10.1016/j.bmc.2004.09.026
- Hultgren, K. M. and Duffy, J. E. (2010) Sponge host characteristics shape the community structure of their shrimp associates. Mar. Ecol. Prog. Ser. 407, 1-12. https://doi.org/10.3354/meps08609
- Ikenaga, M., Higaki, Y., Saku, K. and Uehara, Y. (2016) High-Density Lipoprotein Mimetics: a Therapeutic Tool for Atherosclerotic Diseases. J. Atheroscler. Thromb. 23, 385-394. https://doi.org/10.5551/jat.33720
- Jang, K. H., Chung, S. C., Shin, J., Lee, S. H., Kim, T. I., Lee, H. S. and Oh, K. B. (2007). Aaptamines as sortase A inhibitors from the tropical sponge Aaptos aaptos. Bioorg. Med. Chem. Lett. 17, 5366-5369. https://doi.org/10.1016/j.bmcl.2007.08.007
- Jares-Erijman, E. A., Sakai, R. and Rinehart, K. L. (1991) Crambescidins: new antiviral and cytotoxic compounds from the sponge Crambe crambe. J. Org. Chem. 56, 5712-5715. https://doi.org/10.1021/jo00019a049
- Juagdan, E. G., Kalindindi, R. S., Scheuer, P. J. and Kelly-Borges, M. (1995) Elenic acid, an inhibitor of topoisomerase II, from a sponge, Plakinastrella sp. Tetrahedron Lett. 36, 2905-2908. https://doi.org/10.1016/0040-4039(95)00432-C
- Kalinin, V. I., Ivanchina, N. V., Krasokhin, V. B., Makarieva, T. N. and Stonik, V. A. (2012). Glycosides from marine sponges (Porifera, Demospongiae): structures, taxonomical distribution, biological activities and biological roles. Mar. Drugs 10, 1671-1710. https://doi.org/10.3390/md10081671
- Kang, J.-H. (2014) Protein kinase C (PKC) isozymes and cancer. New J. Sci. 2014, 231418.
- Kitagawa, I., Kobayashi, M., Kitanaka, K., Kido, M. and Kyogoku, Y. (1983) Marine natural products, XII: on the chemical constituents of the Okinawan marine sponge Hymeniacidon aldis. Chem. Pharm. Bull. 31, 2321-2328. https://doi.org/10.1248/cpb.31.2321
- Kobayashi, J. and Ishibashi, M. (1993) Bioactive metabolites of symbiotic marine microorganisms. Chem. Rev. 93, 1753-1769. https://doi.org/10.1021/cr00021a005
- Konig, G. M., Wright, A. D. and Angerhofer, C. K. (1996) Novel potent antimalarial diterpene isocyanates, isothiocyanates, and isonitriles from the tropical marine sponge Cymbastela hooperi. J. Org. Chem. 61, 3259-3267. https://doi.org/10.1021/jo952015z
- Kossuga, M. H., Nascimento, A. M., Reimao, J. Q., Tempone, A. G., Taniwaki, N. N., Veloso, K., Ferreira, A. G., Cavalcanti, B. C., Pessoa, C., Moraes, M. O., Mayer, A. M., Hajdu, E. and Berlinck, R. G. (2008) Antiparasitic, antineuroinflammatory, and cytotoxic polyketides from the marine sponge Plakortis angulospiculatus collected in Brazil. J. Nat.Prod. 71, 334-339. https://doi.org/10.1021/np0705256
- Kolodziejczyk, J. and Ponczek, M. B. (2013) The role of fibrinogen, fibrin and fibrin (ogen) degradation products (FDPs) in tumor progression. Contemp. Oncol. (Pozn.) 17, 113-119.
- Laport, M. S., Santos, O. C. and Muricy, G. (2009) Marine sponges:potential sources of new antimicrobial drugs. Curr. Pharm. Biotechnol. 10, 86-105. https://doi.org/10.2174/138920109787048625
- Leal, M. C., Puga, J., Serodio, J., Gomes, N. C. M. and Calado, R. (2012) Trends in the discovery of new marine natural products from invertebrates over the last two decades - where and what are we bioprospecting? PLoS ONE 7, e30580. https://doi.org/10.1371/journal.pone.0030580
- Linington, R. G., Robertson, M., Gauthier, A., Finlay, B. B., MacMillan, J. B., Molinski, T. F., van Soest, R. and Andersen, R. J. (2006) Caminosides BD, Antimicrobial Glycolipids Isolated from the Marine Sponge Caminus s phaeroconia. J. Nat. Prod. 69, 173-177. https://doi.org/10.1021/np050192h
- Liu, B., Timar, J., Howlett, J., Diglio, C. A. and Honn, K. V. (1991) Lipoxygenase metabolites of arachidonic and linoleic acids modulate the adhesion of tumor cells to endothelium via regulation of protein kinase C. Cell Regul. 2, 1045-1055. https://doi.org/10.1091/mbc.2.12.1045
- Loya, S. and Hizi, A. (1990) The inhibition of human immunodeficiency virus type 1 reverse transcriptase by avarol and avarone derivatives. FEBS Lett. 269, 131-134. https://doi.org/10.1016/0014-5793(90)81137-D
- Lundberg, U. (1995) Methods and applications of stress research. Technol. Health Care 3, 3-9.
- Maldonado, M., Carmona, C., Velasquez, Z., Puig, A., Cruzado, A., Lopez, A. and Young, C. M. (2005) Siliceous sponges as a silicon sink: An overlooked aspect of the benthopelagic coupling in the marine silicon cycle. Limnol. Oceanogr. 50, 799-809. https://doi.org/10.4319/lo.2005.50.3.0799
- Maria, M., Lone, G. and Thomas, O. L. (2011) Production of bioactive secondary metabolites by marine vibrionaceae. Mar. Drugs 9, 1440-1468. https://doi.org/10.3390/md9091440
- Martins, A., Vieira, H., Gaspar, H. and Santos, S. (2014) Marketed marine natural products in the pharmaceutical and cosmoceutical industries: tips for success. Mar. Drugs 12, 1066-1101. https://doi.org/10.3390/md12021066
- Maryanoff, B. E., Qiu, X., Padmanabhan, K. P., Tulinsky, A., Almond, H. R., Andrade-Gordon, P., Greco, M. N., Kauffman, J. A., Nicolaou, K. C., Liu, A., Brungs, P. H. and Fusetani, N. (1993) Molecular basis for the inhibition of human alpha-thrombin by the macrocyclic peptide cyclotheonamide A. Proc. Natl. Acad. Sci. U.S.A. 90, 8048-8052. https://doi.org/10.1073/pnas.90.17.8048
- Matsunaga, S., Fusetani, N. and Konosu, S. (1985) Bioactive marine metabolites, VII: structures of discodermins B, C, and D, antimicrobial peptides from the marine sponge Discodermia kiiensis. Tetrahedron Lett. 26, 855-856. https://doi.org/10.1016/S0040-4039(00)61947-0
- Mayer, A. M., Rodriguez, A. D., Berlinck, R. G. and Fusetani, N. (2011) Marine pharmacology in 2007-8: Marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mechanisms of action. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 153, 191-222. https://doi.org/10.1016/j.cbpc.2010.08.008
- Mayer, A. M. and Hamann, M. T. (2004) Marine pharmacology in 2000:marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antituberculosis, and antiviral activities; affecting the cardiovascular, immune, and nervous systems and other miscellaneous mechanisms of action. Mar. Biotechnol. 6, 37-52. https://doi.org/10.1007/s10126-003-0007-7
- Mayer, A. M. S. and Jacobs, R. S. (1988) Manoalide: an anti-inflammatory and analgesic marine natural product. Mem. Calif. Acad. Sci. 13, 133.
- Mayer, A. M. S. and Lehmann, V. K. B. (2000) Marine pharmacology in 1998: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, anthelmintic, antiplatelet, antiprotozoal, and antiviral activities; with actions on the cardiovascular, endocrine, immune, and nervous systems; and other miscellaneous mechanisms of action. Pharmacologist 42, 62-69.
- McCaffrey, E. J. and Endeau, R. (1985) Antimicrobial activity of tropical and subtropical sponges. Mar. Biol. 89, 1-8. https://doi.org/10.1007/BF00392871
- Mishra, S. K., Satpathy, S. K. and Mohanty, S. (1999) Survey of malaria treatment and deaths. Bull. World Health Organ. 77, 1020.
-
Miyamoto, S., Izumi, M., Hori, M., Kobayashi, M., Ozaki, H. and Karaki, H. (2000) Xestospongin C, a selective and membrane-permeable inhibitor of
$IP_3$ receptor, attenuates the positive inotropic effect of${\alpha}$ -adrenergic stimulation in guinea-pig papillary muscle. Br. J. Pharmacol. 130, 650-654. https://doi.org/10.1038/sj.bjp.0703358 - Miyaoka, H., Shimomura, M., Kimura, H., Yamada, Y., Kim, H. S. and Wataya, Y. (1998) Antimalarial activity of kalahinol A and new relative diterpenoids from the Okinawan sponge, Acanthella sp. Tetrahedron 54, 13467-13474. https://doi.org/10.1016/S0040-4020(98)00818-7
- Mol, V. P. L., Raveendran, T. V. and Parameswaran, P. S. (2009) Antifouling activity exhibited by secondary metabolites of the marine sponge, Haliclona exigua (Kirkpatrick). Int. Biodeterior. Biodegrad. 63, 67-72. https://doi.org/10.1016/j.ibiod.2008.07.001
- Momparler, R. L. (2013) Optimization of cytarabine (ARA-C) therapy for acute myeloid leukemia. Exp. Hematol. Oncol. 2, 20. https://doi.org/10.1186/2162-3619-2-20
- Morton, S. L., Moeller, P. D., Young, K. A. and Lanoue, B. (1998) Okadaic acid production from the marine dinoflagellate Prorocentrum belizeanum Faust isolated from the Belizean coral reef ecosystem. Toxicon. 36, 201-206. https://doi.org/10.1016/S0041-0101(97)00054-8
- Moura, R. M., Queiroz, A. F., Fook, J. M., Dias, A. S., Monteiro, N. K., Ribeiro, J. K., Moura, G. E., Macedo, L. L., Santos, E. A. and Sales, M. P. (2006) CvL, a lectin from the marine sponge Cliona varians: Isolation, characterization and its effects on pathogenic bacteria and Leishmania promastigotes. Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. 145, 517-523. https://doi.org/10.1016/j.cbpa.2006.08.028
- Muller, W. G., Sobel, C., Diehl-Seifert, B., Maidhof, A. and Schroder, H. C. (1987) Influence of the antileukemic and anti-human immunodeficiency virus agent avarol on selected immune responses in vitro and in vivo. Biochem. Pharmacol. 36, 1489-1494. https://doi.org/10.1016/0006-2952(87)90115-8
- Muller, W. E., Schröder, H. C., Wiens, M., Perovic-Ottstadt, S., Batel, R. and Muller, I. M. (2004) Traditional and modern biomedical prospecting: Part II-the benefits. Evid. Based Complement. Alternat. Med. 1, 133-144. https://doi.org/10.1093/ecam/neh030
-
Nausch, B., Heppner, T. J. and Nelson, M. T. (2010) Nerve-released acetylcholine contracts urinary bladder smooth muscle by inducing action potentials independently of
$IP_3$ -mediated calcium release. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R878-R888. https://doi.org/10.1152/ajpregu.00180.2010 - Northcote, P. T., Blunt, J. W. and Munro, M. H. G. (1991) Pateamine: a potent cytotoxin from the New Zealand marine sponge, mycale sp. Tetrahedron Lett. 32, 6411-6414. https://doi.org/10.1016/0040-4039(91)80182-6
- Oclarit, J. M., Okada, H., Ohta, S., Kaminura, K., Yamaoka, Y., Iizuka, T., Miyashiro, S. and Ikegami, S. (1994) Anti-bacillus substance in the marine sponge, Hyatella species, produced by an associated Vibrio species bacterium. Microbios 78, 7-16.
- Oh, K. B., Mar, W., Kim, S., Kim, J. Y., Lee, T. H., Kim, J. G., Shin, D., Sim, C. J. and Shin, J. (2006) Antimicrobial activity and cytotoxicity of bis (indole) alkaloids from the sponge Spongosorites sp. Biol. Pharm. Bull. 29, 570-573. https://doi.org/10.1248/bpb.29.570
- O'Rourke, A., Kremb, S., Bader, T. M., Helfer, M., Schmitt-Kopplin, P., Gerwick, W. H., Brack-Werner, R. and Voolstra, C. R. (2016) Alkaloids from the sponge Stylissa carteri present prospective scaffolds for the inhibition of human immunodeficiency Virus 1 (HIV-1). Mar. Drugs 14, 28. https://doi.org/10.3390/md14020028
- Pattenden, G., Critcher, D. J. and Remuinan, M. (2004) Total synthesis of ()-pateamine A, a novel immunosuppressive agent from Mycale sp. Can. J. Chem. 82, 353-365. https://doi.org/10.1139/v03-199
- Perry, N. B., Blunt, J. W., Munro, M. H. G. and Thompson, A. M. (1990) Antiviral and antitumor agents from a New Zealand sponge, Mycale sp. 2. Structures and solution conformations of mycalamides A and B. J. Org. Chem. 55, 223-227. https://doi.org/10.1021/jo00288a037
- Petit, G. R. and Knight, J. C., inventors; Arizona Board of Regents, assignee. Cribrostatins 3-5. United States patent US 6437128 B1. 2002 Aug 20.
- Pettit, R. K., Fakoury, B. R., Knight, J. C., Weber, C. A., Pettit, G. R., Cage, G. D. and Pon, S. (2004) Antibacterial activity of the marine sponge constituent cribrostatin 6. J. Med. Microbiol. 53, 61-65. https://doi.org/10.1099/jmm.0.05250-0
- Piel, J. (2004) Metabolites from symbiotic bacteria. Nat Prod Rep. 21, 519-538. https://doi.org/10.1039/b310175b
- Piel, J. (2006) Bacterial symbionts: prospects for the sustainable production of invertebrate-derived pharmaceuticals. Curr. Med. Chem. 13, 39-50. https://doi.org/10.2174/092986706775197944
- Pika, J., Tischler, M. and Andersen, R. J. (1992) Glaciasterols A and B, 9,11-secosteroids from the marine sponge Aplysilla glacialis. Can. J. Chem. 70, 1506-1510. https://doi.org/10.1139/v92-186
- Plaza, A., Gustchina, E., Baker, H. L., Kelly, M. and Bewley, C. A. (2007) Mirabamides A-D, depsipeptides from the sponge Siliquariaspongia mirabilis that inhibit HIV-1 fusion. J. Nat. Prod. 70, 1753-1760. https://doi.org/10.1021/np070306k
- Ponton, J., Ruchel, R., Clemonds, K. V., Coleman, D. C., Grillot, R., Guarro, J., Aldebert, D., Ambroise-Thomas, P., Cano, J., Carrillo-Munoz, A. J., Gene, J., Pinel, C., Stevens, D. A. and Sullivan, D. (2000) Emerging pathogens. Med. Mycol. 38, 225-236. https://doi.org/10.1080/mmy.38.s1.225.236
- Proksch, P., Edrada, R. A. and Ebel, R. (2002) Drugs from the seascurrent status and microbiological implications. Appl. Microbiol. Biotechnol. 59, 125-134. https://doi.org/10.1007/s00253-002-1006-8
- Proksch, P., Putz, A., Ortlepp, S., Kjer, J. and Bayer, M. (2010) Bioactive natural products from marine sponges and fungal endophytes. Phytochem. Rev. 9, 475-489. https://doi.org/10.1007/s11101-010-9178-9
- Quinn, R. J., Gregson, R. P., Cook, A. F. and Bartlett, A. F. (1980) Isolation and synthesis of 1-methylisoguanisine, a potent pharmacologically active constituent from the marine sponge Tedania digitata. Tetrahedron Lett. 21, 567-568. https://doi.org/10.1016/S0040-4039(01)85558-1
- Qureshi, A. and Faulkner, D. J. (1999) Haplosamates A and B: new steroidal sulfamate esters from two haplosclerid sponges. Tetrahedron 55, 8323-8330. https://doi.org/10.1016/S0040-4020(99)00465-2
- Rahden-Staron, I. (2002) The inhibitory effect of the fungicides captan and captafol on eukaryotic topoisomerases in vitro and lack of recombinagenic activity in the wing spot test of Drosophila melanogaster. Mutat. Res. 518, 205-213. https://doi.org/10.1016/S1383-5718(02)00107-9
- Ramel, G. (2010) Phylum Porifera [cited 2013 Jan]. Available from:http://www.earthlife.net/inverts/porifera.html/.
- Rao, V. K., Kasanah, N., Wahyuono, S., Tekwani, B. L., Schinazi, R. F. and Hamann, M. T. (2004) Three new manzamine alkaloids from a common indonesian sponge and their activity against infectious and tropical parasitic diseases. J. Nat. Prod. 67, 1314-1318. https://doi.org/10.1021/np0400095
- Rice, L. B. (2006) Antimicrobial resistance in gram-positive bacteria. Am. J. Infect. Control 34, S11-S19. https://doi.org/10.1016/j.ajic.2006.05.220
- Romo, D., Rzasa, R. M., Shea, H. A., Park, K., Langenhan, J. M., Sun, L., Akhiezer, A. and Liu, J. O. (1998) Total synthesis and immunosuppressive activity of (-)-pateamine A and related compounds: implementation of a b-lactambased macrocyclization. J. Am. Chem. Soc. 120, 12237-12254. https://doi.org/10.1021/ja981846u
- Rubio, B. K., van Soest, R. W. and Crews, P. (2007) Extending the record of meroditerpenes from Cacospongia marine sponges. J. Nat. Prod. 70, 628-631. https://doi.org/10.1021/np060633c
- Sagar, S., Kaur, M., Minneman, K. P. (2010) Antiviral lead compounds from marine sponges. Mar. Drugs 8, 2619-2638. https://doi.org/10.3390/md8102619
- Sakai, R., Higa, T., Jefford, C. W. and Bernardinelli, G. (1986) Manzamin, A., a novel antitumor alkaloid from a sponge. J. Am. Chem. Soc. 108, 6404-6405. https://doi.org/10.1021/ja00280a055
- Sandven, P. (2000) Epidemiology of candidemia. Rev. Iberoam. Micol. 17, 73-81.
-
Schaschke, N. and Sommerhoff, P. C. (2010) Upgrading a natural product: inhibition of human
${\beta}$ -tryptase by cyclotheonamide analogues. Chem. Med. Chem. 5, 367-370. https://doi.org/10.1002/cmdc.200900484 - Schwartsmann, G. (2000) Marine organisms and other novel natural sources of new cancer drugs. Ann. Oncol. 11, 235-243.
- Shimosaka, A. (2002) Role of NKT cells and a-galactosyl ceramide. Int. J. Hematol. 76, 277-279. https://doi.org/10.1007/BF03165262
- Shuman, R.T., Rothenberger, R. B., Campell, C. S., Smith, G. F., Gifford-Moore, D. S. and Gesellchen, P. D. (1993) Highly selective tripeptide thrombm inhibitors. J. Med. Chem. 36, 314-319. https://doi.org/10.1021/jm00055a002
- Sipkema, D., Osinga, R., Schatton, W., Mendola, D., Tramper, J. and Wijffels, R. H. (2005) Large scale production of pharmaceuticals by marine sponges: Sea, cell, or biosynthesis. Biotechnol. Bioeng. 90, 201-222. https://doi.org/10.1002/bit.20404
- Souza, T. M., Abrantes, J. L., de A Epifanio, R., Leite Fontes, C. F. and Frugulhetti, I. C. (2007) The alkaloid 4-methylaaptamine isolated from the sponge Aaptos aaptos impairs Herpes simplex virus Type 1 penetration and immediate early protein synthesis. Planta Med. 73, 200-205. https://doi.org/10.1055/s-2007-967109
- Stead, P., Hiscox, S., Robinson, P, S., Pike, N. B., Sidebottom, P. J., Roberts, A. D., Taylor, N. L., Wright, A. E., Pomponi, S. A. and Langley, D. (2000) Eryloside F, a novel penasterol disaccharide possessing potent thrombin receptor antagonist activity. Bioorg. Med. Chem. Lett. 10, 661-664. https://doi.org/10.1016/S0960-894X(00)00063-9
-
Suzuki, H., Shindo, K., Ueno, A., Miura, T., Takei, M., Sakakibara, M., Fukamachi, H., Tanaka, J. and Higa, T. (1999) S1319: A novel
${\beta}2$ -adrenoceptor agonist from a marine sponge Dysidea sp. Bioorg. Med. Chem. Lett. 9, 1361-1364. https://doi.org/10.1016/S0960-894X(99)00205-X - Takei, M., Burgoyne, D. L. and Andersen, R. J. (1994) Effect of contignasterol on histamine release induced by anti-immunoglobulin E from rat peritoneal mast cells. J. Pharm. Sci. 83, 1234-1235. https://doi.org/10.1002/jps.2600830909
- Tan, P., Luscinskas, F. W. and Homer-Vanniasinkam, S. (1997) Cellular and molecular mechanisms of inflammation and thrombosis. Eur. J. Vasc. Endovasc. Surg. 17, 373-389.
- Tasdemir, D., Topaloglu, B., Perozzo, R., Brun, R., O'Neill, R., Carballeira, N. M., Zhang, X., Tonge, P. J., Linden, A. and Ruedi, P. (2007) Marine natural products from the Turkish sponge Agelas oroides that inhibit the enoyl reductases from Plasmodium falciparum, Mycobacterium tuberculosis and Escherichia coli. Bioorg. Med. Chem. 15, 6834-6845. https://doi.org/10.1016/j.bmc.2007.07.032
- Ter Haar, E., Kowalski, R. J., Hamel, E., Lin, C. M., Longley, R. E., Gunasekera, S. P., Rosenkranz, H. S. and Day, B. W. (1996) Discodermolide, a cytotoxic marine agent that stabilizes microtubules more potently than taxol. Biochemistry 35, 243-250. https://doi.org/10.1021/bi9515127
- Thomas, T. R., Kavlekar, D. P., and LokaBharathi, P. A. (2010) Marine drugs from sponge-microbe association-a review. Mar. Drugs 8, 1417-1468. https://doi.org/10.3390/md8041417
- Torres, Y. R., Berlink, R. G., Nascimento, G. G., Fortier, S. C., Pessoa, C. and de Moraes, M. O. (2002) Antibacterial activity against resistant bacteria and cytotoxicity of four alkaloid toxins isolated from the marine sponge Arenosclera brasiliensis. Toxicon. 40, 885-891. https://doi.org/10.1016/S0041-0101(01)00286-0
- Turk, T., Ambrozic Avgustin, J., Batista, U., Strugar, G., Kosmina, R., Civovic, S., Janussen, D., Kauferstein, S., Mebs, D. and Sepcic, K. (2013) Biological activities of ethanolic extracts from deep-sea antarctic marine sponges. Mar. Drugs 11, 1126-1139. https://doi.org/10.3390/md11041126
- Urban, S., De Almeida Leone, P., Carroll, A. R., Fechner, G. A., Smith, J., Hooper, J. N. and Quinn, R. J. (1999) Axinellamines A-D, novel imidazo-azolo-imidazole alkaloids from the australian marine sponge Axinella sp. J. Org. Chem. 64, 731-735. https://doi.org/10.1021/jo981034g
- Uriz, M. J., Martin, D. and Rosell, D. (1992) Relationships of biological and taxonomic characteristics to chemically mediated bioactivity in Mediterranean littoral sponges. Mar. Biol. 113, 287-297.
- Vik, A., Hedner, E., Charnock, C., Tangen, L. W., Samuelsen, O., Larsson, R., Bohlin, L. and Gundersen, L. L. (2007) Antimicrobial and cytotoxic activity of agelasine and agelasimine analogs. Bioorg. Med. Chem. 15, 4016-4037. https://doi.org/10.1016/j.bmc.2007.03.086
- Wakimoto, T., Maruyama, A., Matsunaga, S., Fusetani, N., Shinoda, K. and Murphy, P. T. (1999) Octa- and nonaprenylhydroquinone sulfates, inhibitors of a1,3-fucosyltransferase VII, from an Australian marine sponge Sarcotragus sp. Bioorg. Med. Chem. Lett. 9, 727-730. https://doi.org/10.1016/S0960-894X(99)00059-1
- Walsh, T. J., Groll, A., Hiemenz, J., Fleming, R., Roilides, E. and Anaissie, E. (2004) Infections due to emerging and uncommon medically important fungal pathogens. Clin. Microbiol. Infect. 10, 48-66. https://doi.org/10.1111/j.1470-9465.2004.00839.x
- Walter, S. (2005) Drug discovery: a history. p. 258. Wiley, New York.
- Wellington, K. D., Cambie, R. C., Rutledge, P. S. and Bergquist, P. R. (2000) Chemistry of Sponges. 19. Novel Bioactive Metabolites from Hamigeratarangaensis. J. Nat. Prod. 63, 79-85. https://doi.org/10.1021/np9903494
- White, D. E. and Fenner, F. J. (1986) Medical Virology. Academic Press., San Diego.
- WHO (2015) World Malaria report. World Health Organization, Geneva.
- Wiedbrauk, D. L. and Johnston, S. L. G. (1992) Manual of Clinical Virology. Raven Press., New York.
- Xue, S., Zhanga, H. T., Wua, P. C., Zhanga, W. and Yuana, Q. (2004) Study on bioactivity of extracts from marine sponges in Chinese Sea. J. Exp. Mar. Biol. Ecol. 298, 71-78. https://doi.org/10.1016/j.jembe.2003.08.004
- Yasuhara-Bell, J. and Lu, Y. (2010) Marine compounds and their antiviral activities. Antiviral Res. 86, 231-240. https://doi.org/10.1016/j.antiviral.2010.03.009
- Yousaf, M., El Sayed, K. A., Rao, K. V., Lim, C. W., Hu, J. F., Kelly, M., Franzblau, S. G, Zhang, F., Peraud, O., Hill, R. T. and Hamann, M. T. (2002) 12,34-Oxamanzamines, novel biocatalytic and natural products from rnanzamine producing Indo-Pacific sponges. Tetrahedron 58, 7397-7402. https://doi.org/10.1016/S0040-4020(02)00825-6
- Zabriskie, T. M., Klocke, J. A., Ireland, C. M., Marcus, A. H., Molinski, T. F., Faulkner, D. J., Xu, C. and Clardy, J. C. (1986) Jaspamide, a modified peptide from a Jaspis sponge, with insecticidal and antifungal activity. J. Am. Chem. Soc. 108, 3123-3124. https://doi.org/10.1021/ja00271a062
- Zapolska-Downar, D., Zapolska-Downar, A., Markiewski, M., Ciechanowicz, M., Kaczmarczyk, M. and Naruszewicz, M. (2001) Selective inhibition by procubol of vascular cell adhesion molecule 1(VCAM-1) expression in human vascular endothelial cells. Atherosclerosis 155, 123-130. https://doi.org/10.1016/S0021-9150(00)00553-0
Cited by
- Emerging biopharmaceuticals from bioactive peptides derived from marine organisms vol.90, pp.1, 2017, https://doi.org/10.1111/cbdd.12925
- Trachycladines and Analogues: Synthesis and Evaluation of Anticancer Activity vol.12, pp.6, 2017, https://doi.org/10.1002/cmdc.201600620
- Current status and future therapeutic perspectives of glioblastoma multiforme (GBM) therapy: A review vol.92, 2017, https://doi.org/10.1016/j.biopha.2017.05.125
- Marine-Derived Pharmaceuticals - Challenges and Opportunities vol.24, pp.6, 2016, https://doi.org/10.4062/biomolther.2016.181
- Emerging biopharmaceuticals from marine actinobacteria vol.49, 2017, https://doi.org/10.1016/j.etap.2016.11.015
- Current Status and Future Prospects of Marine Natural Products (MNPs) as Antimicrobials vol.15, pp.9, 2017, https://doi.org/10.3390/md15090272
- Antibacterial activity of the Saudi Red Sea sponges against Gram-positive pathogens 2017, https://doi.org/10.1016/j.jksus.2017.08.009
- Marine actinobacteria as a drug treasure house vol.87, 2017, https://doi.org/10.1016/j.biopha.2016.12.086
- Pleiotropic Role of Puupehenones in Biomedical Research vol.15, pp.10, 2017, https://doi.org/10.3390/md15100325
- Sponges: A Reservoir of Genes Implicated in Human Cancer vol.16, pp.1, 2018, https://doi.org/10.3390/md16010020
- Antinociceptive and Anti-inflammatory Activities of Marine Sponges Aplysina Caissara, Haliclona sp. and Dragmacidon Reticulatum vol.61, pp.0, 2018, https://doi.org/10.1590/1678-4324-2018180104
- Fatty Acids Pattern from the French Polynesian Monanchora n. sp. Marine Sponge vol.54, pp.6, 2018, https://doi.org/10.1007/s10600-018-2575-9
- Characterization of the Jomthonic Acids Biosynthesis Pathway and Isolation of Novel Analogues in Streptomyces caniferus GUA-06-05-006A vol.16, pp.8, 2018, https://doi.org/10.3390/md16080259
- Breaking down Leukemia Walls: Heteronemin, a Sesterterpene Derivative, Induces Apoptosis in Leukemia Molt4 Cells through Oxidative Stress, Mitochondrial Dysfunction and Induction of Talin Expression vol.16, pp.6, 2018, https://doi.org/10.3390/md16060212
- Significance and potential of marine microbial natural bioactive compounds against biofilms/biofouling: necessity for green chemistry vol.6, pp.2167-8359, 2018, https://doi.org/10.7717/peerj.5049
- New Drugs from the Sea: Pro-Apoptotic Activity of Sponges and Algae Derived Compounds vol.17, pp.1, 2019, https://doi.org/10.3390/md17010031
- Marine sponges as a powerful tool for trace elements biomonitoring studies in coastal environment vol.131, pp.1, 2018, https://doi.org/10.1016/j.marpolbul.2018.04.073
- Oceans as a Source of Immunotherapy vol.17, pp.5, 2016, https://doi.org/10.3390/md17050282
- First identification of a fatal fungal infection of the marine sponge Chondrosia reniformis by Aspergillus tubingensis vol.135, pp.3, 2016, https://doi.org/10.3354/dao03397
- The Phylum Bryozoa as a Promising Source of Anticancer Drugs vol.17, pp.8, 2016, https://doi.org/10.3390/md17080477
- Immunomodulatory Activity of the Marine Sponge, Haliclona ( Soestella ) sp. (Haplosclerida: Chalinidae), from Sri Lanka in Wistar Albino Rats: Immunosuppression and Th1-Skewed Cytokine Response vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/7281295
- Sponge Density and Distribution Constrained by Fluid Forcing in the Deep Sea vol.7, pp.None, 2020, https://doi.org/10.3389/fmars.2020.00395
- Screening Marine Natural Products for New Drug Leads against Trypanosomatids and Malaria vol.18, pp.4, 2016, https://doi.org/10.3390/md18040187
- New Cytotoxic Natural Products from the Red Sea Sponge Stylissa carteri vol.18, pp.5, 2020, https://doi.org/10.3390/md18050241
- Moving away from traditional antibiotic treatment: can macrocyclic lactones from marine macroalga-associated heterotroph be the alternatives? vol.104, pp.16, 2016, https://doi.org/10.1007/s00253-020-10658-0
- p-Terphenyl alcohols from a marine sponge-derived fungus, Aspergillus candidus OUCMDZ-1051 vol.2, pp.3, 2020, https://doi.org/10.1007/s42995-020-00039-x
- Diterpenoids isolated from the Samoan marine sponge Chelonaplysilla sp. inhibit Mycobacterium tuberculosis growth vol.73, pp.8, 2020, https://doi.org/10.1038/s41429-020-0315-4
- Chemically Diverse and Biologically Active Secondary Metabolites from Marine Phylum chlorophyta vol.18, pp.10, 2020, https://doi.org/10.3390/md18100493
- Natural Compounds as Guides for the Discovery of Drugs Targeting G-Protein-Coupled Receptors vol.25, pp.21, 2016, https://doi.org/10.3390/molecules25215060
- Bioactivity and Biotechnological Overview of Naturally Occurring Compounds from the Dinoflagellate Family Symbiodiniaceae: A Systematic Review vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/1983589
- Antimicrobial Potential and Phytochemical Screening of Clathria sp. 1 and Tedania (Tedania) stylonychaeta Sponge Crude Extracts Obtained from the South East Coast of South Africa vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/6697944
- The Essentials of Marine Biotechnology vol.8, pp.None, 2016, https://doi.org/10.3389/fmars.2021.629629
- Marine Sponge is a Promising Natural Source of Anti-SARS-CoV-2 Scaffold vol.12, pp.None, 2016, https://doi.org/10.3389/fphar.2021.666664
- New glucose-6-phosphate dehydrogenase inhibitor from the Red Sea sponge Echinoclathria sp vol.72, pp.None, 2021, https://doi.org/10.1016/j.tetlet.2021.152986
- Difficidin class of polyketide antibiotics from marine macroalga-associated Bacillus as promising antibacterial agents vol.105, pp.16, 2016, https://doi.org/10.1007/s00253-021-11390-z
- Recent Advances in the Biosynthesis of Polyhydroxyalkanoates from Lignocellulosic Feedstocks vol.11, pp.8, 2016, https://doi.org/10.3390/life11080807
- A Soft Spot for Chemistry-Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution vol.19, pp.8, 2016, https://doi.org/10.3390/md19080448
- Lipid polymer hybrid nanocarriers as a combinatory platform for different anti-SARS-CoV-2 drugs supported by computational studies vol.11, pp.46, 2016, https://doi.org/10.1039/d1ra04576h
- Marine Brominated Tyrosine Alkaloids as Promising Inhibitors of SARS-CoV-2 vol.26, pp.20, 2016, https://doi.org/10.3390/molecules26206171
- Marine-Derived Compounds for the Potential Treatment of Glucocorticoid Resistance in Severe Asthma vol.19, pp.11, 2016, https://doi.org/10.3390/md19110586
- Ecological and Pharmacological Activities of Polybrominated Diphenyl Ethers (PBDEs) from the Indonesian Marine Sponge Lamellodysidea herbacea vol.19, pp.11, 2016, https://doi.org/10.3390/md19110611
- Unravelling the Anti-Inflammatory and Antioxidant Potential of the Marine Sponge Cliona celata from the Portuguese Coastline vol.19, pp.11, 2016, https://doi.org/10.3390/md19110632
- Volatile Organic Compounds, Indole, and Biogenic Amines Assessment in Two Mediterranean Irciniidae (Porifera, Demospongiae) vol.19, pp.12, 2021, https://doi.org/10.3390/md19120711
- Caralluma tuberculata N.E.Br Manifests Extraction Medium Reliant Disparity in Phytochemical and Pharmacological Analysis vol.26, pp.24, 2016, https://doi.org/10.3390/molecules26247530
- Pharmacological Activities of Extracts and Compounds Isolated from Mediterranean Sponge Sources vol.14, pp.12, 2021, https://doi.org/10.3390/ph14121329
- Antibacterial activity of endosymbiotic fungi isolated from marine sponges collected from Kotok Kecil Island, Seribu Islands, Jakarta vol.948, pp.1, 2021, https://doi.org/10.1088/1755-1315/948/1/012069
- Antibacterial activity of endosymbiotic fungi isolated from marine sponges collected from Kotok Kecil Island, Seribu Islands, Jakarta vol.948, pp.1, 2021, https://doi.org/10.1088/1755-1315/948/1/012069
- Polyketide-derived macrobrevins from marine macroalga-associated Bacillus amyloliquefaciens as promising antibacterial agents against pathogens causing nosocomial infections vol.193, pp.None, 2016, https://doi.org/10.1016/j.phytochem.2021.112983
- Promising antiparasitic agents from marine sponges vol.29, pp.1, 2016, https://doi.org/10.1016/j.sjbs.2021.08.068
- In-silico anti-inflammatory potential of guaiane dimers from Xylopia vielana targeting COX-2 vol.40, pp.1, 2022, https://doi.org/10.1080/07391102.2020.1815579
- Metataxanomic, bioactivity and microbiome analysis of Red Sea marine sponges from Egypt vol.61, pp.None, 2016, https://doi.org/10.1016/j.margen.2021.100920