DOI QR코드

DOI QR Code

열처리 온도에 따라서 절연체, 반도체, 전도체의 특성을 갖는 GZO 박막의 특성연구

Study on GZO Thin Films as Insulator, Semiconductor and Conductor Depending on Annealing Temperature

  • Oh, Teresa (Department of Semiconductor Engineering, Cheongju University)
  • 투고 : 2016.02.04
  • 심사 : 2016.05.24
  • 발행 : 2016.06.27

초록

To observe the bonding structure and electrical characteristics of a GZO oxide semiconductor, GZO was deposited on ITO glasses and annealed at various temperatures. GZO was found to change from crystal to amorphous with increasing of the annealing temperatures; GZO annealed at $200^{\circ}C$ came to have an amorphous structure that depended on the decrement of the oxygen vacancies; increase the mobility due to the induction of diffusion currents occurred because of an increment of the depletion layer. The increasing of the annealing temperature caused a reduction of the carrier concentration and an increase of the bonding energy and the depletion layer; therefore, the large potential barrier increased the diffusion current dna the Hall mobility. However, annealing temperatures over $200^{\circ}C$ promoted crystallinity by the defects without oxygen vacancies, and then degraded the depletion layer, which became an Ohmic contact without a potential barrier. So the current increased because of the absence of a potential barrier.

키워드

참고문헌

  1. D. S. Lee, D. J. Kim and H. J. Kim, Korean J. Mater. Res., 25, 238 (2015). https://doi.org/10.3740/MRSK.2015.25.5.238
  2. JOHN G. SIMMONS, Phys. Rev., 155, 657 (1967). https://doi.org/10.1103/PhysRev.155.657
  3. T. Oh and C. H. Kim, JNN. 16, 2096 (2016). https://doi.org/10.1166/jnn.2016.12023
  4. W. T. Chen, S. Y. Lo, S. C. Kao, H. W. Zan, C. C. Tsai, J. H. Lin, C. H. Fang, and C. C. Lee, IEEE Electron. Dev. Lett., 32, 1552 (2011). https://doi.org/10.1109/LED.2011.2165694
  5. S. W. Tsao, T. C. Chang, S. Y. Huang, M. C. Chen, S. C. Chen, C. T. Tsai, Y. J. Kuo, Y. C. Chen and W. C. Wub, Solid-State Electron., 54, 1497 (2010). https://doi.org/10.1016/j.sse.2010.08.001
  6. G. Kenugapal and S. J. Kim, Curr. Appl. Phys., 11, S381 (2011). https://doi.org/10.1016/j.cap.2011.03.030
  7. J. S. Lee, Y. J. Kwack and W. S. Choi, J. Korean Phys. Soc., 59, 3305 (2011).
  8. T. Oh, EML. 11, 853 (2015).
  9. J. Maserjian, J. Vac. Sci. Technol. A, 11, 996 (1974). https://doi.org/10.1116/1.1318719
  10. K. Nomura, T. Kamiya, H. Ohta, M. Hirano and H. Hosono, Appl. Phys. Lett., 93, 192107 (2008). https://doi.org/10.1063/1.3020714
  11. O. Mitrofanov and M. Mantra, J. Appl. Phys., 95, 6414 (2004). https://doi.org/10.1063/1.1719264
  12. T. Oh, Korean J. Mater. Res., 25, 1149 (2015).
  13. M. E. Lopes, H. L. Gomes, M. C. R. Medeiros, P. Barquinha, L. Pereira, E. Fortunato, R. Martins and I. Ferreira, Appl. Phys. Lett., 95, 063502 (2009). https://doi.org/10.1063/1.3187532
  14. N. Zhang, Ke Yu, Q. Li, Z. Q. Zhu and Q. Wan, J. Appl. Phys., 103, 104305 (2008). https://doi.org/10.1063/1.2924430
  15. J. Heo, H. J. Kim, J. H. Han and J. W. Shon, Thin Solid Films, 515, 5035 (2007). https://doi.org/10.1016/j.tsf.2006.10.095
  16. D. W. Jeong, J. J. Kim and J. O Lee, J. Korean Phys. Soc., 59, 3133 (2011). https://doi.org/10.3938/jkps.59.3133
  17. T. Oh, Korean J. Mater. Res., 25, 347 (2015). https://doi.org/10.3740/MRSK.2015.25.7.347
  18. S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa and M. Kawasaki1, Appl. Phys. Lett., 93, 123309 (2008). https://doi.org/10.1063/1.2989125
  19. D. Cha, S. Lee, J. Jung and I. An, J. Korean Phys. Soc., 56, 846 (2010). https://doi.org/10.3938/jkps.56.846