DOI QR코드

DOI QR Code

Preparation of Porous SiC by Freeze Drying of Polycarbosilane Emulsion

폴리카보실란 에멀젼의 동결건조를 이용한 다공체 SiC 제조

  • Hwang, Yeon (Department of Materials Science & Engineering, Seoul National University of Science & Technology)
  • 황연 (서울과학기술대학교 신소재공학과)
  • Received : 2016.01.06
  • Accepted : 2016.04.27
  • Published : 2016.06.27

Abstract

Porous SiC beads were prepared by freeze-drying a polycarbosilane (PCS) emulsion. The water-in-oil (w/o) emulsion, which was composed of water, PCS dissolved p-xylene, and sodium xylenesulfonate (SXS) as an emulsifier, was frozen by dropping it onto a liquid $N_2$ bath; this process resulted in 1~2 mm sized beads. Beads were cured at $200^{\circ}C$ for 1 h in air and heat-treated at $800^{\circ}C$ and $1400^{\circ}C$ for 1 h in an Ar gas flow. Two types of pores, lamella-shaped and spherical pores, were observed. Lamellar-shaped pores were found to develop during the freezing of the xylene solvent. Water droplets in the w/o emulsion were changed into spherical pores under freeze-drying. At $1400^{\circ}C$ of heat-treatment, porous SiC was synthesized with a low level of impurities.

Keywords

References

  1. P. Colombo, G. Mera, R. Riedel and G. D. Soraru, J. Am. Ceram. Soc., 93, 1805 (2010).
  2. G. Mera, A. Navrotsky, S. Sen, H-J. Kleebe and R. Riedel, J. Mater. Chem. A, 1, 3826 (2013). https://doi.org/10.1039/c2ta00727d
  3. J. Zeschky, T. Hofner, C. Arnold, R. Weissmann, D. Bahloul-Hourlier, M. Scheffler and P. Greil, Acta Mater., 53, 927 (2005). https://doi.org/10.1016/j.actamat.2004.10.039
  4. C. Vakifahmetoglu, P. Colombo, A. Pauletti, C. F. MartinF and F. Babonneau, Int. J. Appl. Ceram. Technol., 7, 528 (2010).
  5. C. Wang, J. Wang, C. B. Park and Y. W. Kim, J. Ceram. Proc. Res., 10, 238 (2009).
  6. M. Shibuya, T. Takahashi and K. Koyama, Compos. Sci. Technol., 67, 119 (2007). https://doi.org/10.1016/j.compscitech.2006.03.022
  7. L. Biasetto, A. Francis, P. Palade, G. Principi and P. Colombo, J. Mater. Sci., 43, 4119 (2008). https://doi.org/10.1007/s10853-007-2224-3
  8. R. A. White, E. W. White and J. N. Weber, Science, 176, 922 (1972). https://doi.org/10.1126/science.176.4037.922
  9. V. Bakumov, M. Schwarz and E. Kroke, J. Eur. Ceram. Soc., 29, 2857 (2009). https://doi.org/10.1016/j.jeurceramsoc.2009.04.004
  10. R. Frind, M. Oschartz and S. Kaskel, J. Mater. Chem., 21, 11936 (2011). https://doi.org/10.1039/c1jm10612k
  11. C. Vakifahmetoglu, M. Balliana and P. Colombo, J. Eur. Ceram. Soc., 31, 1481 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.02.012
  12. T. G. Mason, J. N. Wilking, K. Meleson, C. B. Chang and S. M. Graves, J. Phys.: Condens. Matter., 18, R635 (2006). https://doi.org/10.1088/0953-8984/18/41/R01
  13. S. Sajjadi, M. Zerfa and B. W. Brooks, Colloid Surf. A, 218, 241 (2003). https://doi.org/10.1016/S0927-7757(02)00596-4
  14. B. H. Yoon, E.J. Lee, H. E. Kim and Y. H. Koh, J. Am. Ceram. Soc., 90, 1753 (2007). https://doi.org/10.1111/j.1551-2916.2007.01703.x
  15. P. van de Witte, P. J. Dijkstra, J. W. A. van den Berg and J. Feijen, J. Membr. Sci., 117, 1 (1996). https://doi.org/10.1016/0376-7388(96)00088-9
  16. C. Y. Gao, A. Li, L. X. Feng, X .S. Yi and J. C. Shen, Polym. Int., 49, 323 (2000). https://doi.org/10.1002/(SICI)1097-0126(200004)49:4<323::AID-PI369>3.0.CO;2-7