References
- Arguelles-Arias, A., Ongena, M., Halimi, B., Lara, Y., Brans, A., Joris, B. and Fickers, P. 2009. Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb. Cell Fact. 8:63. https://doi.org/10.1186/1475-2859-8-63
- Bajpai, V. K. and Kang, S. C. 2012. In vitro and in vivo inhibition of plant pathogenic fungi by essential oil and extracts of Magnolia liliflora Desr. J. Agr. Sci. Tech. 14:845-856.
- Ben Khedher, S., Boukedi, H., Kilani-Feki, O., Chaib, I., Laarif, A., Abdelkefi-Mesrati, L. and Tounsi, S. 2015. Bacillus amyloliquefaciens AG1 biosurfactant: putative receptor diversity and histopathological effects on Tuta absoluta midgut. J. Invertebr. Pathol. 132:42-47. https://doi.org/10.1016/j.jip.2015.08.010
- Bodour, A. A. and Miller-Maier, R. M. 1998. Application for a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. J. Microbiol. Methods 32:273-280. https://doi.org/10.1016/S0167-7012(98)00031-1
- Breznak, J. A. and Brune, A. 1994. Role of microorganisms in the digestion of lignocellulose by termites. Annu. Rev. Entomol. 36:453-487.
- Brune, A. 2003. Symbionts aiding digestion. In: Encyclopedia of insects, eds. by V. H. Resh and R. T. Carde, pp. 1102-1107. Academic Press, New York, NY, USA.
- Buensanteai, N., Yuen, G. Y. and Prathuangwong, S. 2008. The biocontrol bacterium Bacillus amlyliquefaciens KPS46 produces auxin, surfactin and extracellular proteins for enhanced growth of soybean plant. Thai J. Agri. Sci. 41:101-116.
- Cawoy, H., Bettiol, W., Fickers, P. and Ongena, M. 2011. Bacillus-based biological control of plant diseases. In: Pesticides in the modern world: pesticides use and management, ed. by M. Stoytcheva. InTech, Rijeka, Croatia.
- Chen, X. H., Koumoutsi, A., Scholz, R., Eisenreich, A., Schneider, K., Heinemeyer, I., Morgenstern, B., Voss, B., Hess, W. R., Reva, O., Junge, H., Voigt, B., Jungblut, P. R., Vater, J., Süssmuth, R., Liesegang, H., Strittmatter, A., Gottschalk, G. and Borriss, R. 2007. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 25:1007-1014. https://doi.org/10.1038/nbt1325
- Chen, Y., Yan, F., Chai, Y., Liu, H., Kolter, R., Losick, R. and Guo, J. H. 2013. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ. Microbiol. 15:848-864. https://doi.org/10.1111/j.1462-2920.2012.02860.x
- Choudhary, D. K. and Johri, B. N. 2009. Interactions of Bacillus spp. and plants--with special reference to induced systemic resistance (ISR). Microbiol. Res. 164:493-513. https://doi.org/10.1016/j.micres.2008.08.007
- Chowdhury, S. P., Hartmann, A., Gao, X. and Borriss, R. 2015. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42: a review. Front Microbiol. 6:780.
- Dietel, K., Beator, B., Budiharjo, A., Fan, B. and Borriss, R. 2013. Bacterial traits involved in colonization of Arabidopsis thaliana roots by Bacillus amyloliquefaciens FZB42. Plant Pathol. J. 29:59-66. https://doi.org/10.5423/PPJ.OA.10.2012.0155
- Ernst, R., Arditti, J. and Healey, N. P. 1971. Biological effects of surfactants. I. Influence on the growth of orchid seedlings. New Phytol. 70:457-475. https://doi.org/10.1111/j.1469-8137.1971.tb02547.x
- Gardener, B. B., Kim, I. S., Kim, K. Y. and Kim, Y. C. 2014. Draft genome sequence of a chitinase-producing biocontrol bacterium, Lysobacter antibioticus HS124. Res. Plant Dis. 20:216-218. https://doi.org/10.5423/RPD.2014.20.3.216
- Ghribi, D. and Ellouze-Chaabouni, S. 2011. Enhancement of Bacillus subtilis lipopeptide biosurfactants production through optimization of medium composition and adequate control of aeration. Biotechnol. Res. Int. 2011:653654.
- Gregersen, T. 1978. Rapid method for distinction of gram-negative from gram-positive bacteria. Eur. J. Appl. Microbiol. Biotechnol. 5:123-127. https://doi.org/10.1007/BF00498806
- Ha, B. D. 2013. Isolation of antagonistic microorganism against plant pathogen from feces of Allomyrina dichotoma larva and large scale fermentation of Bacillus amyloliquefaciens KB3. M.S. thesis. Chonnam National University, Gwangju, Korea.
- Hornby, D. 1983. Suppressive soils. Ann. Rev. Phytopathol. 21:65-85. https://doi.org/10.1146/annurev.py.21.090183.000433
- Kang, B. R. 2012. Biocontrol of tomato Fusarium wilt by a novel genotype of 2,4-diacetylphloroglucinol-producing Pseudomonas sp. NJ134. Plant Pathol. J. 28:93-100. https://doi.org/10.5423/PPJ.NT.10.2011.0202
- Kim, J. C., Choi, G. J., Park, J. H., Kim, H. T. and Cho, K. Y. 2001. Activity against plant pathogenic fungi of phomalactone isolated from Nigrospora sphaerica. Pest. Manag. Sci. 57:554-559. https://doi.org/10.1002/ps.318
- Kim, P. I., Ryu, J., Kim, Y. H. and Chi, Y. T. 2010. Production of biosurfactant lipopeptides iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J. Microbiol. Biotechnol. 20:138-145.
- Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111-120. https://doi.org/10.1007/BF01731581
- King, E. O., Ward, M. K. and Raney, D. E. 1954. Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab Clin. Med. 44:301-307.
- Kupferschmied, P., Maurhofer, M. and Keel, C. 2013. Promise for plant pest control: root-associated pseudomonads with insecticidal activities. Front. Plant Sci. 4:287.
- Lee, B., Lee, S. and Ryu, C. M. 2012. Foliar aphid feeding recruits rhizosphere bacteria and primes plant immunity against pathogenic and non-pathogenic bacteria in pepper. Ann. Bot. 110:281-290. https://doi.org/10.1093/aob/mcs055
- Li, H., Soares, M. A., Torres, M. S., Bergen, M. and White J. F. Jr. 2015. Endophytic bacterium, Bacillus amyloliquefaciens, enhances ornamental hosta resistance to diseases and insect pests. J. Plant Interact. 10:224-229. https://doi.org/10.1080/17429145.2015.1056261
- Martin, P. A. and Travers, R. S. 1989. Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl. Environ. Microbiol. 55:2437-2442.
- Mendes, R., Kruijt, M., de Bruijn, I., Dekkers, E., van der Voort, M., Schneider, J. H., Piceno, Y. M., DeSantis, T. Z., Andersen, G. L., Bakker, P. A. and Raaijmakers, J. M. 2011. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097-1100. https://doi.org/10.1126/science.1203980
- Mezghanni, H., Khedher, S. B., Tounsi, S. and Zouari, N. 2012. Medium optimization of antifungal activity production by Bacillus amyloliquefaciens using statistical experimental design. Prep. Biochem. Biotechnol. 42:267-278. https://doi.org/10.1080/10826068.2011.614989
- Moran, N. A., Russell, J. A., Koga, R. and Fukatsu, T. 2005. Evolutionary relationships of three new species of Enterobacteriaceae living as symbionts of aphids and other insects. Appl. Environ. Microbiol. 71:3302-3310. https://doi.org/10.1128/AEM.71.6.3302-3310.2005
- Nadarasah, G. and Stavrinides, J. 2011. Insects as alternative hosts for phytopathogenic bacteria. FEMS Microbiol. Rev. 35:555-575. https://doi.org/10.1111/j.1574-6976.2011.00264.x
- Nihorimbere, V., Cawoy, H., Seyer, A., Brunelle, A., Thonart, P. and Ongena, M. 2012. Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS Microbiol. Ecol. 79:176-191. https://doi.org/10.1111/j.1574-6941.2011.01208.x
- Nitschke, M. and Pastore, G. M. 2006. Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresour. Technol. 97:336-341. https://doi.org/10.1016/j.biortech.2005.02.044
- Olcott, M. H., Henkels, M. D., Rosen, K. L., Walker, F. L., Sneh, B., Loper, J. E. and Taylor, B. J. 2010. Lethality and developmental delay in Drosophila melanogaster larvae after ingestion of selected Pseudomonas fluorescens strains. PLoS One 5:e12504. https://doi.org/10.1371/journal.pone.0012504
- Ongena, M. and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16:115-125. https://doi.org/10.1016/j.tim.2007.12.009
- Park, J. Y., Oh, S. A., Anderson, A. J., Neiswender, J., Kim, J. C. and Kim, Y. C. 2011. Production of the antifungal compounds phenazine and pyrrolnitrin from Pseudomonas chlororaphis O6 is differentially regulated by glucose. Lett. Appl. Microbiol. 52:532-537. https://doi.org/10.1111/j.1472-765X.2011.03036.x
- Pérez-García, A., Romero, D. and de Vicente, A. 2011. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr. Opin. Biotechnol. 22:187-193. https://doi.org/10.1016/j.copbio.2010.12.003
- Ruffner, B., Péchy-Tarr, M., Ryffel, F., Hoegger, P., Obrist, C., Rindlisbacher, A., Keel, C. and Maurhofer, M. 2013. Oral insecticidal activity of plant-associated pseudomonads. Environ. Microbiol. 15:751-763. https://doi.org/10.1111/j.1462-2920.2012.02884.x
- Sambrook, J. and Russell. D. 2001. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
- Schroth, M. N. and Hancock, J. G. 1982. Disease-suppressive soil and root-colonizing bacteria. Science 216:1376-1381. https://doi.org/10.1126/science.216.4553.1376
- Shanchez-Contreras, M. and Vlisidou, I. 2008. The diversity of insect-bacteria interactions and its applications for disease control. Biotechnol. Genet. Eng. Rev. 25:203-243. https://doi.org/10.5661/bger-25-203
- Siripornvisal, S. 2010. Biocontrol efficacy of Bacillus subtilis BCB3-19 against tomato gray mold. KMITL Sci. Tech. J. 10:37-44.
- Song, G. C., Lee, S., Hong, J., Choi, H. K., Hong, G. H., Bae, D. W., Mysore, K. S., Park, Y. S. and Ryu, C. M. 2015. Aboveground insect infestation attenuates belowground Agrobacterium-mediated genetic transformation. New Phytol. 207:148-158. https://doi.org/10.1111/nph.13324
- Sreerag, R. S., Jayaprakas, C. A., Ragesh, L. and Kumar, S. N. 2014. Endosymbiotic bacteria associated with the mealy bug, Rhizoecus amorphophallis (Hemiptera: Pseudococcidae). Int. Sch. Res. Not. 2014:268491.
- Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30:2725-2729. https://doi.org/10.1093/molbev/mst197
- Wang, Y., Lu, Z. X., Bie, X. M. and Fengxia, L. 2010. Separation and extraction of antimicrobial lipopeptides produced by Bacillus amyloliquefaciens ES-2 with macroporous resin. Eur. Food Res. Technol. 231:189-196. https://doi.org/10.1007/s00217-010-1271-1
- Weisburg, W. G., Barns, S. M., Pelletier, D. A. and Lane, D. J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173:697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
- Yun, D. C., Yang, S. Y., Kim, Y. C. and Kim, I. S. 2013. Identification of surfactins as aphicidal metabolite produced by Bacillus amyloliquefaciens G1. J. Korean Soc. Appl. Biol. Chem. 56:751-753. https://doi.org/10.1007/s13765-013-3238-y
Cited by
- Synthesis and characterization of silver nanoparticles using Bacillus amyloliquefaciens and Bacillus subtilis to control filarial vector Culex pipiens pallens and its antimicrobial activity 2016, https://doi.org/10.1080/21691401.2016.1241793
- Enhanced Iron and Selenium Uptake in Plants by Volatile Emissions of Bacillus amyloliquefaciens (BF06) vol.7, pp.1, 2017, https://doi.org/10.3390/app7010085
- Construction of a recombinant strain of Pseudomonas fluorescens producing both phenazine-1-carboxylic acid and cyclic lipopeptide for the biocontrol of take-all disease of wheat 2017, https://doi.org/10.1007/s10658-017-1217-6
- Pumilacidin-Like Lipopeptides Derived from Marine Bacterium Bacillus sp. Strain 176 Suppress the Motility of Vibrio alginolyticus vol.83, pp.12, 2017, https://doi.org/10.1128/AEM.00450-17