DOI QR코드

DOI QR Code

Biological Control of Apple Anthracnose by Paenibacillus polymyxa APEC128, an Antagonistic Rhizobacterium

  • Kim, Young Soo (Department of Plant Medicals, Andong National University) ;
  • Balaraju, Kotnala (Agricultural Science and Technology Research Institute, Andong National University) ;
  • Jeon, Yongho (Department of Plant Medicals, Andong National University)
  • 투고 : 2016.01.15
  • 심사 : 2016.03.06
  • 발행 : 2016.06.01

초록

The present study investigated the suppression of the disease development of anthracnose caused by Colletotrichum gloeosporioides and C. acutatum in harvested apples using an antagonistic rhizobacterium Paenibacillus polymyxa APEC128 (APEC128). Out of 30 bacterial isolates from apple rhizosphere screened for antagonistic activity, the most effective strain was APEC128 as inferred from the size of the inhibition zone. This strain showed a greater growth in brain-heart infusion (BHI) broth compared to other growth media. There was a reduction in anthracnose symptoms caused by the two fungal pathogens in harvested apples after their treatment with APEC128 in comparison with non-treated control. This effect is explained by the increased production of protease and amylase by APEC128, which might have inhibited mycelial growth. In apples treated with different APEC128 suspensions, the disease caused by C. gloeosporioides and C. acutatum was greatly suppressed (by 83.6% and 79%, respectively) in treatments with the concentration of $1{\times}10^8$ colony forming units (cfu)/ml compared to other lower dosages, suggesting that the suppression of anthracnose development on harvested apples is dose-dependent. These results indicated that APEC128 is one of the promising agents in the biocontrol of apple anthracnose, which might help to increase the shelf-life of apple fruit during the post-harvest period.

키워드

참고문헌

  1. Afanador-Kafuri, L., Minz, D., Maymon, M. and Freeman, S. 2003. Characterization of Colletotrichum isolates from tamarillo, passiflora, and mango in Colombia and identification of a unique species from the genus. Phytopathology 93:579-587. https://doi.org/10.1094/PHYTO.2003.93.5.579
  2. Agrawal, T. and Kotasthane, A. S. 2012. Chitinolytic assay of indigenous Trichoderma isolates collected from different geographical locations of Chhattisgarh in Central India. SpringerPlus 1:73. https://doi.org/10.1186/2193-1801-1-73
  3. Alvarez, V. M., von der Weid, I., Seldin, L. and Santos, A. L. 2006. Influence of growth conditions on the production of extracellular proteolytic enzymes in Paenibacillus peoriae NRRL BD-62 and Paenibacillus polymyxa SCE2. Lett. Appl. Microbiol. 43:625-630. https://doi.org/10.1111/j.1472-765X.2006.02015.x
  4. Ash, C., Priest, F. G. and Collins, M. D. 1993. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 64:253-260.
  5. Bajpai, V. K., Choi, S. W., Cho, M. S. and Kang, S. C. 2009. Isolation and morphological identification of apple anthracnose fungus of Colletotrichum sp. KV-21. Korean J. Environ. Agri. 28:442-446. https://doi.org/10.5338/KJEA.2009.28.4.442
  6. Cho, S. J., Lee, S. K., Cha, B. J., Kim, Y. H. and Shin, K. S. 2003. Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin A from Bacillus subtilis strain KS03. FEMS Microbiol. Lett. 223:47-51. https://doi.org/10.1016/S0378-1097(03)00329-X
  7. Cook, R. J. 2000. Advances in plant health management in the twentieth century. Annu. Rev. Phytopathol. 38:95-116. https://doi.org/10.1146/annurev.phyto.38.1.95
  8. Deacon, J. W. 1997. Modern mycology. Blackwell Scientific, Oxford, UK.
  9. Dijksterhuis, J., Sanders, M., Gorris, L. G. and Smid, E. J. 1999. Antibiosis plays a role in the context of direct interaction during antagonism of Paenibacillus polymyxa towards Fusarium oxysporum. J. Appl. Microbiol. 86:13-21. https://doi.org/10.1046/j.1365-2672.1999.t01-1-00600.x
  10. Droby, S., Wisniewski, M., Macarisin, D. and Wilson, C. 2009. Twenty years of postharvest biocontrol research: is it time for a new paradigm? Postharvest Biol. Technol. 52:137-145. https://doi.org/10.1016/j.postharvbio.2008.11.009
  11. Ferreira, J. H. S., Matthee, F. N. and Thomas, A. C. 1991. Biological control of Eutypa lata on grapevine by an antagonistic strain of Bacillus subtilis. Phytopathology 81:283-287. https://doi.org/10.1094/Phyto-81-283
  12. Fleming, H. P., Etchells, J. L. and Costilow, R. N. 1975. Microbial inhibition by an isolate of Pediococcus from cucumber brines. Appl. Microbiol. 30:1040-1042.
  13. Fossi, B. T., Tavea, F., Jiwoua, C. and Ndjouenkeu, R. 2009. Screening and phenotypic characterization of thermostable amylases producing yeasts and bacteria strains from some Cameroonian soils. Afr. J. Microbiol. Res. 3:504-514.
  14. Gouzou, L., Burtin, G., Philippy, R., Bartoli, F. and Heulin, T. 1993. Effect of inoculation with Bacillus polymyxa on soil aggregation in the wheat rhizosphere: preliminary examination. Geoderma 56:479-491. https://doi.org/10.1016/0016-7061(93)90128-8
  15. Han, J. H., Shim, H., Shin, J. H. and Kim, K. S. 2015. Antagonistic activities of Bacillus spp. strains isolated from tidal flat sediment towards anthracnose pathogens Colletotrichum acutatum and C. gloeosporioides in South Korea. Plant Pathol. J. 31:165-175. https://doi.org/10.5423/PPJ.OA.03.2015.0036
  16. Hankin, L. and Anagnostakis, S. L. 1977. Solid media containing carboxymethylcellulose to detect CX cellulose activity of micro-organisms. J. Gen. Microbiol. 98:109-115. https://doi.org/10.1099/00221287-98-1-109
  17. Henz, G. P., Boiteux, L. S. and Lopes C. A. 1992. Outbreak of strawberry anthracnose caused by Colletotrichum acutatum in central Brazil. Plant Dis. 76:212.
  18. Heulin, T., Berge, O., Mavingui, P., Gouzou, L. Hebbar, K. P. and Balandrean, J. 1994. Bacillus polymyxa and Rahnella aquatilis, the dominant $N_2$-fixing bacteria associated with rhizosphere in French soils. Eur. J. Soil Biol. 30:35-42.
  19. Janisiewicz, W. J. and Korsten, L. 2002. Biological control of postharvest diseases of fruits. Annu. Rev. Phytopathol. 40:411-441. https://doi.org/10.1146/annurev.phyto.40.120401.130158
  20. Kim, S. G., Khan, Z., Jeon, Y. H. and Kim, Y. H. 2009. Inhibitory effects of Paenibacillus polymyxa GBR-462 on Phytophthora capsici causing phytophthora blight in chili pepper. J. Phytopathol. 153:329-337.
  21. Kloepper, J. W. 1992. Plant growth-promoting rhizobacteria as biological control agents. In: Soil microbial ecology: applications in agricultural and environmental management, ed. by F. B. Metting Jr., pp. 225-274. Marcel Dekker Inc., New York, NY, USA.
  22. Lee, D. H., Kim, D. K., Jeon, Y. A., Uhm, J. Y., Hong, S. B. 2007. Molecular and cultural characterization of Colletotrichum spp. causing bitter rot of apples in Korea. Plant Pathol. J. 23:37-44. https://doi.org/10.5423/PPJ.2007.23.2.037
  23. Lee, G. W., Ko, J. A., Oh, B. T., Choi, J. R., Lee, K. J., Chae, J. C. and Kamala-Kannan, S. 2012. Biological control of postharvest diseases of apples, peaches and nectarines by Bacillus subtilis S16 isolated from halophytes rhizosphere. Biocontrol Sci. Technol. 22:351-361. https://doi.org/10.1080/09583157.2012.658553
  24. Lee, K. Y., Heo, K. R., Choi, K. H., Kong, H. G., Nam, J., Yi, Y. B., Park, S. H., Lee, S. W. and Moon, B. J. 2009. Characterization of a chitinase gene exhibiting antifungal activity from a biocontrol bacterium Bacillus licheniformis N1. Plant Pathol. J. 25:344-351. https://doi.org/10.5423/PPJ.2009.25.4.344
  25. Li, J., Yang, Q., Zhao, L. H., Zhang, S. M., Wang, Y. X. and Zhao, X. Y. 2009. Purification and characterization of a novel antifungal protein from Bacillus subtilis strain B29. J. Zhejiang Univ. Sci. B 10:264-272. https://doi.org/10.1631/jzus.B0820341
  26. Liang, Y. L., Zhang, Z., Wu, M., Wu, Y. and Feng, J. X. 2014. Isolation, screening, and identification of cellulolytic bacteria from natural reserves in the subtropical region of China and optimization of cellulase production by Paenibacillus terrae ME27-1. Biomed. Res. Int. Online publication. doi:10.1155/2014/512497.
  27. Liu, J., Zhou, T., He, D., Li, X. Z., Wu, H., Liu, W. and Gao, X. 2011. Functions of lipopeptides bacillomycin D and fengycin in antagonism of Bacillus amyloliquefaciens C06 towards Monilinia fructicola. J. Mol. Microbiol. Biotechnol. 20:43-52. https://doi.org/10.1159/000323501
  28. Mari, M., Neri, F. and Bertolini, P. 2009. Management of important diseases in Mediterranean high value crops. Stewart Postharvest Rev. 5:1-10.
  29. Mavingui, P. and Heulin, T. 1994. In vitro chitinase and antifungal activity of a soil, rhizosphere and rhizoplane population of Bacillus polymyxa. Soil Biol. Biochem. 26:801-803. https://doi.org/10.1016/0038-0717(94)90277-1
  30. Nunes, C., Usall, J., Teixido, N., Torres, R. and Vinas, I. 2002. Control of Penicillium expansum and Botrytis cinerea on apples and pears with the combination of Candida sake and Pantoea agglomerans. J. Food Prot. 65:178-184. https://doi.org/10.4315/0362-028X-65.1.178
  31. Onofre, S. B. and Antoniazzi, D. 2014. Behavior of the fungus Colletotrichum gloeosporioides (Penz & Sacc.), which causes bitter rot in apples after harvesting. Adv. Microbiol. 4:202-206. https://doi.org/10.4236/aim.2014.44026
  32. Park, J. W., Balaraju, K., Kim, J. W., Lee, S. W. and Park, K. S. 2013. Systemic resistance and growth promotion of chili pepper induced by an antibiotic producing Bacillus vallismortis strain BS07. Biol. Control 65:246-257. https://doi.org/10.1016/j.biocontrol.2013.02.002
  33. Roberts, W. K. and Selitrennikoff, C. P. 1988. Plant and bacterial chitinases differ in antifungal activity. J. Gen. Microbiol. 134:169-176.
  34. Rosado, A. S. and Seldin, L. 1993. Production of a potentially novel anti-microbial substance by Bacillus polymyxa. World J. Microbiol. Biotechnol. 9:521-528. https://doi.org/10.1007/BF00386287
  35. Sadhana, L. and Silvia, T. 2009. Ecology and biotechnological potential of Paenibacillus polymyxa: a minireview. Indian J. Microbiol. 49:2-10. https://doi.org/10.1007/s12088-009-0008-y
  36. Saravanakumar, D., Ciavorella, A., Spadaro, D., Garibaldi, A. and Gullino, M. L. 2008. Metschnikowia pulcherrima strain MACH1 outcompetes Botrytis cinerea, Alternaria alternata and Penicillium expansum in apples through iron depletion. Postharvest Biol. Technol. 49:121-128. https://doi.org/10.1016/j.postharvbio.2007.11.006
  37. SAS Institute. 1995. JMP statistics and graphics guide, version 3. SAS Institute, Cary, NC, USA. pp. 65-95.
  38. Shaw, J., Lin, F. P., Chen, S. C. and Chen, H. C. 1995. Purification and properties of an extracellular ${\alpha}$-amylase from Thermus sp. Bot. Bull. Acad. Sin. 36:195-200.
  39. Shishido, M., Massicotte, H. B. and Chanway, C. P. 1996. Effect of plant growth promoting Bacillus strains on pine and spruce seedling growth and mycorrhizal infection. Ann. Bot. 77:433-442. https://doi.org/10.1006/anbo.1996.0053
  40. Singh, H. P. and Singh, T. A. 1993. The interaction of rockphosphate Bradyrhizobium, vesicular-arbuscular mycorrhizae and phosphate-solubilizing microbes on soybean grown in asub-Himalayan mollisol. Mycorrhiza 4:37-43. https://doi.org/10.1007/BF00203249
  41. Tamura, K., Dudley, J., Nei, M. and Kumar, S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599. https://doi.org/10.1093/molbev/msm092
  42. Vichova, J., Stankova, B. and Pokorny, R. 2012. First report of Colletotrichum acutatum on tomato and apple fruits in the Czech Republic. Plant Dis. 96:769-770.
  43. Weisburg, W. G., Barns, S. M., Pelletier, D. A. and Lane, D. J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173:697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  44. Xu, S. J., Hong, S. J., Choi, W. and Kim, B. S. 2014. Antifungal activity of Paenibacillus kribbensis strain T-9 isolated from soils against several plant pathogenic fungi. Plant Pathol J. 30:102-108. https://doi.org/10.5423/PPJ.OA.05.2013.0052
  45. Yanez-Mendizabal, V., Usall, J., Vinas, I., Casals, C., Marin, S., Solsona, C. and Teixido, N. 2011. Potential of a new strain of Bacillus subtilis CPA-8 to control the major postharvest diseases of fruit. Biocontrol Sci. Technol. 21:409-426. https://doi.org/10.1080/09583157.2010.541554

피인용 문헌

  1. Biocontrol of grapevine aerial and root pathogens by Paenibacillus sp. strain B2 and paenimyxin in vitro and in planta vol.109, 2017, https://doi.org/10.1016/j.biocontrol.2017.03.004
  2. Complete Genome Sequence of Biocontroller Bacillus velezensis Strain JTYP2, Isolated from Leaves of Echeveria laui vol.5, pp.24, 2017, https://doi.org/10.1128/genomeA.00505-17
  3. Isolation of Antifungal Compound and Biocontrol Potential of Lysobacter antibioticus HS124 against Fusarium Crown Rot of Wheat vol.49, pp.4, 2016, https://doi.org/10.7745/KJSSF.2016.49.4.393
  4. Effects of rhizobacteria Paenibacillus polymyxa APEC136 and Bacillus subtilis APEC170 on biocontrol of postharvest pathogens of apple fruits vol.17, pp.12, 2016, https://doi.org/10.1631/jzus.B1600117
  5. Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review pp.1549-7852, 2019, https://doi.org/10.1080/10408398.2017.1417235