참고문헌
- Abo-Elyousr, K. A. M., Ibrahim, Y. E. and Balabel, N. M. 2012. Induction of disease defensive enzymes in response to treatment with acibenzolar-S-methyl (ASM) and Pseudomonas fluorescens Pf2 and inoculation with Ralstonia solanacearum race 3, biovar 2 (phylotype II). J. Phytopathol. 160:382-389. https://doi.org/10.1111/j.1439-0434.2012.01915.x
- Almoneafy, A. A., Kakar, K. U., Nawaz, Z., Li, B., Ali saand, M., Chun-lan, Y. and Xie, G.-L. 2014. Tomato plant growth promotion and anti-bacterial related mechanisms of four rhizobacterial Bacillus strains against Ralstonia solacearum. Symbiosis 63:59-70. https://doi.org/10.1007/s13199-014-0288-9
- Belanger, R. R. and Benyagoub, M. 1997. Challenges and prospects for integrated control of powdery mildews in the greenhouse. Can. J. Plant Pathol. 19:310-314. https://doi.org/10.1080/07060669709500530
- Chandrasekaran, M., Sonia, B., Hu, S., Oh, S.-H. and Sa, T. 2014. A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress. Mycorrhiza 24:611-625. https://doi.org/10.1007/s00572-014-0582-7
- Chen, D., Liu, X., Li, C., Tian, W., Shen, Q. and Shen, B. 2014. Isolation of Bacillus amyloliquefaciens S20 and its application in control of eggplant bacterial wilt. J. Environ. Manage. 137:120-127. https://doi.org/10.1016/j.jenvman.2014.01.043
- Coll, N. S. and Valls, M. 2013. Current knowledge on the Ralstonia solanacearum type III secretion system. Microb. Biotechnol. 6:614-620.
- Cook, R. J. 1993. Making greater use of introduced microorganisms for biological control of plant pathogens. Annu. Rev. Phytopathol. 31:53-80. https://doi.org/10.1146/annurev.py.31.090193.000413
- Cooper, H. 1998. Synthesizing research: a guide for literature reviews. 3rd ed. Sage Publications, Thousand Oaks, CA, USA. 216 pp.
- Copas, J. and Shi, J. Q. 2000. Meta-analysis, funnel plots and sensitivity analysis. Biostatistics 1:247-262. https://doi.org/10.1093/biostatistics/1.3.247
- Dalla Lana, F., Ziegelmann, P. K., de H. N. Maia, A., Godoy, C. V. and Del Ponte, E. M. 2015. Meta-analysis of the relationship between crop yield and soybean rust severity. Phytopathology 105:307-315. https://doi.org/10.1094/PHYTO-06-14-0157-R
- Dey, R., Pal, K. K. and Tilak, K. V. B. R. 2014. Plant growth promoting rhizobacteria in crop protection and challenges. In: Future challenges in crop protection against fungal pathogens, fungal biology, eds. by A. Goyal and C. Manoharachary, pp. 31-58. Springer, New York, NY, USA.
- Figueiredo, M. V. B., Seldin, L., Araujo, F. F. and Mariano, R. L. R. 2010. Plant growth promoting rhizobacteria: fundamentals and applications. In: Plant growth and health promoting bacteria. Microbiology monographs 18, ed. by D. K. Maheshwari, pp. 21-43. Springer, Berlin, Germany.
- Guo, J.-H., Qi, H.-Y., Guo, Y.-H., Ge, H.-L., Gong, L.-Y., Zhang, L.-X. and Sun, P.-H. 2004. Biocontrol of tomato wilt by plant growth promoting rhizobacteria. Biol. Control 29:66-72. https://doi.org/10.1016/S1049-9644(03)00124-5
- Gurevitch, J. and Hedges, L. V. 1999. Statistical issues in ecological meta-analysis. Ecology 80:1142-1149. https://doi.org/10.1890/0012-9658(1999)080[1142:SIIEMA]2.0.CO;2
- Hayward, A. C. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 29:65-87. https://doi.org/10.1146/annurev.py.29.090191.000433
- Huang, C., Sun, Z., Wang, H., Luo, Y. and Ma, Z. 2012. Effects of wheat cultivar mixtures on stripe rust: a meta-analysis of field trials. Crop Prot. 33:52-58. https://doi.org/10.1016/j.cropro.2011.11.020
- Huet, G. 2014. Breeding for resistances to Ralstonia solanacearum. Front. Plant Sci. 5:715.
- Ji, X., Lu, G., Gai, Y., Zheng, C. and Mu, Z. 2008. Biological control against bacterial wilt and colonization of mulberry by an endophytic Bacillus subtilis strain. FEMS Microbiol. Ecol. 65:565-573. https://doi.org/10.1111/j.1574-6941.2008.00543.x
- Kiaer, L. P., Skovgaard, I. M. and Ostergard, H. 2009. Grain yield increase in cereal variety mixtures: a meta-analysis of field trials. Field Crops Res. 114:361-373. https://doi.org/10.1016/j.fcr.2009.09.006
- Koricheva, J. and Gurevitch, J. 2014. Uses and misuses of metaanalysis in plant ecology. J. Ecol. 102:828-844. https://doi.org/10.1111/1365-2745.12224
- Kurabachew, H. and Wydra, K. 2013. Characterization of plant growth promoting rhizobacteria and their potential as bioprotectant against tomato bacterial wilt caused by Ralstonia solancearum. Biol. Control 67:75-83. https://doi.org/10.1016/j.biocontrol.2013.07.004
- Lajeunesse, M. J. 2011. On the meta-analysis of response ratios for studies with correlated and multi-group designs. Ecology 92:2049-2055. https://doi.org/10.1890/11-0423.1
- Lehmann, A. and Rillig, M. C. 2015. Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops: a meta-analysis. Soil Biol. Biochem. 81:147-158. https://doi.org/10.1016/j.soilbio.2014.11.013
- Lehmann, A., Veresoglou, S. D., Leifheit, E. F. and Rillig, M. C. 2014. Arbuscular mycorrhizal influence on zinc nutrition in crop plants: a meta-analysis. Soil Biol. Biochem. 69:123-131. https://doi.org/10.1016/j.soilbio.2013.11.001
- Liu, B., Qiao, H., Huang, L., Buchenauer, H., Han, Q., Kang, Z. and Gong, Y. 2009. Biological control of take-all in wheat by endophytic Bacillus subtilis E1R-j and potential mode of action. Biol. Control 49:277-285. https://doi.org/10.1016/j.biocontrol.2009.02.007
- Lugtenberg, B. J. J., Dekkers, L. and Bloemberg, G. V. 2001. Molecular determinants of rhizosphere colonization by Pseudomonas. Annu. Rev. Phytopathol. 39:461-490. https://doi.org/10.1146/annurev.phyto.39.1.461
- Maji, S. and Chakrabartty, P. K. 2014. Biocontrol of bacterial wilt of tomato caused by Ralstonia solanacearum by isolates of plant growth promoting rhizobacteria. Aust. J. Crop Sci. 8:208-214.
- Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M., Verdier, V., Beer, S. V., Machado, M. A., Toth, I., Salmond, G. and Foster, G. D. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 13:614-629. https://doi.org/10.1111/j.1364-3703.2012.00804.x
- Nelson, M. E., Gent, D. H. and Grove, G. G. 2015. Metaanalysis reveals a critical period for management of powdery mildew on hop cones. Plant Dis. 99:632-640. https://doi.org/10.1094/PDIS-04-14-0396-RE
- Ngugi, H. K., Esker, P. D. and Scherm, H. 2011. Meta-analysis to determine the effects of plant disease management measures:review and case studies on soybean and apple. Phytopathology 101:31-41. https://doi.org/10.1094/PHYTO-03-10-0068
- Ojiambo, P. S., Paul, P. A. and Holmes, G. J. 2010. A quantitative review of fungicide efficacy for managing downy mildew in cucurbits. Phytopathology 100:1066-1076. https://doi.org/10.1094/PHYTO-12-09-0348
- Ojiambo, P. S. and Scherm, H. 2006. Biological and application-oriented factors influencing plant disease suppression by biological control: a meta-analytical review. Phytopathology 96:1168-1174. https://doi.org/10.1094/PHYTO-96-1168
- Paul, P. A., Madden, L. V., Bradley, C. A., Robertson, A. E., Munkvold, G. P., Shaner, G., Wise, K. A., Malvick, D. K., Allen, T. W., Grybauskas, A., Vincelli, P. and Esker, P. 2011. Meta-analysis of yield response of hybrid field corn to foliar fungicides in the U.S. Corn Belt. Phytopathology 101:1122-1132. https://doi.org/10.1094/PHYTO-03-11-0091
- Paulitz, T. C. and Belanger, R. R. 2001. Biological control in greenhouse systems. Annu. Rev. Phytopathol. 39:103-133. https://doi.org/10.1146/annurev.phyto.39.1.103
- Peeters, N., Guidot, A., Vailleau, F. and Valls, M. 2013. Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era. Mol. Plant Pathol. 14:651-662. https://doi.org/10.1111/mpp.12038
- Raaijmakers, J. M., de Bruijn, I. and de Kock, M. J. 2006. Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol. Plant-Microbe Interact. 19:699-710. https://doi.org/10.1094/MPMI-19-0699
- Ramesh, R. and Phadke, G. S. 2012. Rhizosphere and endophytic bacteria for the suppression of eggplant wilt caused by Ralstonia solanacearum. Crop Prot. 37:35-41. https://doi.org/10.1016/j.cropro.2012.02.008
- Rosenberg, M. S. 2005. The file-drawer problem revisited: a general weighted method for calculating fail-safe numbers in meta-analysis. Evolution 59:464-468. https://doi.org/10.1111/j.0014-3820.2005.tb01004.x
- Rosenberg, M. S., Garrett, K. A., Su, Z. and Bowden, R. L. 2004. Meta-analysis in plant pathology: synthesizing research results. Phytopathology 94:1013-1017. https://doi.org/10.1094/PHYTO.2004.94.9.1013
- Rosenberg, N. J., Adams, D. C. and Gurevitch, J. 2000. Metawin: statistical software for meta-analysis version 2.0. Sinauer, Sunderland, MA, USA. 128 pp.
- Salam, K. P., Thomas, G. J., Beard, C., Loughman, R., MacLeod, W. J. and Salam, M. U. 2013. Application of metaanalysis in plant pathology: a case study examining the impact of fungicides on wheat yield loss from the yellow spot-septoria nodorum blotch disease complex in Western Australia. Food Sec. 5:319-325. https://doi.org/10.1007/s12571-013-0255-y
- Sarkar, S. and Chaudhuri, S. 2013. Evaluation of the biocontrol potential of Bacillus subtilis, Pseudomonas aeruginosa and Trichoderma viride against bacterial wilt of tomato. Asian J. Biol. Life Sci. 2:146-151.
- Seleim, M. A., Saead, F. A., Abd-Alal Moneem, K. M. H. and Abo-Elyousr, K. A. 2011. Biological control of bacterial wilt of tomato by plant growth promoting rhizobacteria. Plant Pathol. J. 10:146-153. https://doi.org/10.3923/ppj.2011.146.153
- Shan, H., Zhao, M., Chen, D., Cheng, J., Li, J., Feng, Z., Ma, Z. and An, D. 2013. Biocontrol of rice blast by the phenaminomethylacetic acid producer of Bacillus methylotrophicus strain BC79. Crop Prot. 44:29-37. https://doi.org/10.1016/j.cropro.2012.10.012
- Singh, N. and Siddiqui, Z. A. 2015. Effects of Bacillus subtilis, Pseudomonas fluorescens and Aspergillus awamori on the wilt-leaf spot disease complex of tomato. Phytoparasitica 43:61-75. https://doi.org/10.1007/s12600-014-0427-0
- Stiling, P. and Cornelissen, T. 2005. What makes a successful biocontrol agent? A meta-analysis of biological control agent performance. Biol. Control 34:236-246. https://doi.org/10.1016/j.biocontrol.2005.02.017
- Takenaka, S., Sekiguchi, H., Nakaho, K., Tojo, M., Masunaka, A. and Takahashi, H. 2008. Colonization of Pythium oligandrum in the tomato rhizosphere for biological control of bacterial wilt disease analyzed by real-time PCR and confocal laser-scanning microscopy. Phytopathology 98:187-195. https://doi.org/10.1094/PHYTO-98-2-0187
- Vanitha, S. C., Niranjana, S. R., Mortensen, C. N. and Umesha, S. 2009. Bacterial wilt of tomato in Karnataka and its management by Pseudomonas fluorescens. BioControl 54:685-695. https://doi.org/10.1007/s10526-009-9217-x
- Wei, Z., Yang, X. M., Yin, S. X., Shen, Q. R., Ran, W. and Xu, Y. C. 2011. Efficacy of Bacillus-fortified organic fertilizer in controlling bacterial wilt of tomato in the field. Appl. Soil Ecol. 48:152-159. https://doi.org/10.1016/j.apsoil.2011.03.013
- Yadeta, K. A. and J. Thomma, B. P. 2013. The xylem as battleground for plant hosts and vascular wilt pathogens. Front Plant Sci. 4:97.
- Yuan, S., Wang, L., Wu, K., Shi, J., Wang, M., Yang, X., Shen, Q. and Shen, B. 2014. Evaluation of Bacillus-fortified organic fertilizer for controlling tobacco bacterial wilt in greenhouse and field experiments. Appl. Soil Ecol. 75:86-94. https://doi.org/10.1016/j.apsoil.2013.11.004
- Zhou, T. T., Li, C. Y., Chen, D., Wu, K., Shen, Q. R. and Shen, B. 2014. phlF- mutant of Pseudomonas fluorescens J2 improved 2,4-DAPG biosynthesis and biocontrol efficacy against tomato bacterial wilt. Biol. Control 78:1-8. https://doi.org/10.1016/j.biocontrol.2014.07.006
피인용 문헌
- Expression of β-1,3-glucanase (GLU) and phenylalanine ammonia-lyase (PAL) genes and their enzymes in tomato plants induced after treatment with Bacillus subtilis CBR05 against Xanthomonas campestris pv. vesicatoria vol.83, pp.1, 2017, https://doi.org/10.1007/s10327-016-0692-5
- Root-mediated signal transmission of systemic acquired resistance against above-ground and below-ground pathogens vol.118, pp.4, 2016, https://doi.org/10.1093/aob/mcw152
- Transient Expression of Whitefly Effectors in Nicotiana benthamiana Leaves Activates Systemic Immunity Against the Leaf Pathogen Pseudomonas syringae and Soil-Borne Pathogen Ralstonia solanacearum vol.6, pp.2296-701X, 2018, https://doi.org/10.3389/fevo.2018.00090