Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Acharya, G., Cochrane, T., Davies, T. and Bowman, E. (2011), "Quantifying and modeling post-failure sediment yields from laboratory-scale soil erosion and shallow landslide experiments with silty loess", Geomorphology, 129(1-2), 49-58. https://doi.org/10.1016/j.geomorph.2011.01.012
- Bowders, J.J., Loehr, J.E. and Owen, J.W. (2000), "Shear behavior of compacted silty loess", Geotechnical Special Publication, 99, 235-246.
- Chen, K.S. and Sha, A.M. (2009), "Study on strength characteristic for loess subgrade filter of Yumenkou-Yanliang highway", Hydrogeol. Eng. Geol., 36(5), 44-48.
- Chen, K.S. and Sha, A.M. (2010), "Study of deformation characteristic of compacted loess", Rock Soil Mech., 31(4), 1023-1030.
- Cheng, H.T., Liu, B.J. and Xie, Y.L. (2008), "Stress-strain-time behavior of compacted loess", J. Chang'an Univ. (Natural Science Edition), 28(1), 6-9.
- Daehyeon, K. and Kang, S.S. (2013), "Engineering properties of compacted loesses as construction materials", J. Civil Eng., 17(2), 335-341.
- Dzagov, A.M. (2009), "Determination of characteristics of the proneness of loess soils to slump-type settlement", Soil Mech. Found. Eng., 46(6), 260-268. https://doi.org/10.1007/s11204-010-9078-4
-
Fang, X.W., Shen, C.N., Chen, Z.H. and Zhang, W. (2011), "Triaxial wetting tests of intact
$Q_2$ loess by computed tomography", China Civil Eng. J., 44(10), 98-106. - Haeri, S.M., Garakani, A., Khosravi, A. and Meehan, C.L. (2014), "Assessing the hydro-mechanical behavior of collapsible soils using a modified triaxial test device", Geotech. Test. J., 37(2), 190-204. https://doi.org/10.1520/GTJ20130034
- Haeri, S.M., Khosravi, A., Garakani, A.A. and Ghazizadeh, S. (2016), "Effect of soil structure and disturbance on hydromechanical behavior of collapsible loessial soils", Int. J. Geomech. [Online Publication]
-
He, Q.F. (2008), "Study on the mechanical and rheological properties of Yan'an
$Q_2$ loess", Ph.D. Dissertation; Chang'an University, Xi'an, China. - Li, B.X. and Miao, T.D. (2009), "Research on water sensitivity of loess shear strength", Chinese J. Rock Mech. Eng., 25(5), 1003-1008.
-
Liang, Q.G., Li, J., Wu, X.Y. and Zhou, A.N. (2015), "Anisotropy of
$Q_2$ loess in the Baijiapo tunnel on the Lanyu railway, China", Bull. Eng. Geol. Environ., 75(1), 109-124. - Luo, Y.D. (2011), "Research on shear strength of compacted soils considering saturation degree", Rock and Soil Mechanics, 32(10), 3143-3148.
- Luo, Y., Wang, T.H., Liu, X.J. and Zhang, H. (2014), "Laboratory study on shear strength of loess joint", Arab. J. Sci. Eng., 39(8), 7549-7554. https://doi.org/10.1007/s13369-014-1318-x
- Munoz-Castelblanco, J.A., Delage, P., Pereira, J.M. and Cui, Y.J. (2011), "Some aspects of the compression and collapse behaviour of an unsaturated natural loess", Geotechnique Letters, 1(2), 17-22. https://doi.org/10.1680/geolett.11.00003
- Munoz-Castelblanco, J.A., Pereira, J.M., Delage, P. and Cui, Y.J. (2012), "The water retention properties of a natural unsaturated loess from Northern France", Geotechnique, 62(2), 95-106. https://doi.org/10.1680/geot.9.P.084
- Olson, R.E. (1998), "Settlement of embankments on soft clay", J. Geotech. Geoenviron. Eng., 124(8), 659-669. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:8(659)
- Qian, Z.Z., Lu, X.L., Yang, W.Z. and Cui, Q. (2014), "Behaviour of micropiles in collapsible loess under tension or compression load", Geomech. Eng., Int. J., 7(5), 477-493. https://doi.org/10.12989/gae.2014.7.5.477
- Rahardjo, H., Meilani, I., Leong, E.C. and Rezaur, R.B. (2009), "Shear strength characteristics of a compacted soil under infiltration conditions", Geomech. Eng., Int. J., 1(1), 35-52. https://doi.org/10.12989/gae.2009.1.1.035
- Shen, C.N., Fang, X.W. and Wang, H.W. (2009), "Research on effects of suction, water content and dry density on shear strength of remolded unsaturated soils", Rock Soil Mech., 30(5), 1347-1352.
-
Tang, H., Dang, Q., Duan, Z., Zhao, F.S. and Song, F. (2014), "Study on creep characteristics of
$Q_2$ loess of Xianyang area in the Guanzhong basin", J. Disast. Prevent. Mitig. Eng., 34(6), 758-763. - Vahedifard, F., Leshchinsky, D., Mortezaei, K. and Lu, N. (2016), "Effective stress-based limit-equilibrium analysis for homogeneous unsaturated slopes", Int. J. Geomech. [Online Publication]
- Vilar, O.M. and Rodrigues, R.A. (2011), "Collapse behavior of soil in a Brazilian region affected by a rising water table", Can. Geotech. J., 48(2), 226-233. https://doi.org/10.1139/T10-065
- Wang, L.H., Bai, X.H. and Feng, J.Q. (2010), "Discussion on shearing strength influencing factors of compacted loess-like backfill", Chinese J. Geotech. Eng., 32, 132-136.
- Wang, J.J., Liang, Y., Zhang, H.P., Wu, Y. and Lin, X. (2014a), "A loess landslide induced by excavation and rainfall", Landslides, 11(1), 141-152. https://doi.org/10.1007/s10346-013-0418-0
- Wang, C.D., Zhou, S.H., Guo, P.J. and Wang, B.L. (2014b), "Experimental analysis on settlement controlling of geogrid-reinforced pile-supported embankments on collapsible loess in high-speed railway", Int. J. Pave. Eng., 15(9), 867-878. https://doi.org/10.1080/10298436.2014.943130
- Wang, X.L., Zhu, Y.P. and Huang, X.F. (2014c), "Field tests on deformation property of self-weight collapsible loess with large thickness", Int. J. Geomech., 14(3), 04014001. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000320
-
Wu, W.J., Chen, W.W., Song, B.H., Feng, L.T. and Ye, W.L. (2012), "Experiment on the shear characteristics of undisturbed
$Q_2$ loess in Lanzhou", J. Lanzhou Univ. (Natural Sciences), 48(6), 21-25. - Zhang, F.Y., Wang, G.H., Kamai, T., Chen, W.W., Zhang, D.X. and Yang, J. (2013), "Undrained shear behavior of loess saturated with different concentrations of sodium chloride solution", Eng. Geol., 155(3), 69-79. https://doi.org/10.1016/j.enggeo.2012.12.018
- Zhuang, J.Q. and Peng, J.B. (2014), "A coupled slope cutting - A prolonged rainfall-induced loess landslide: a 17 October 2011 case study", Bull. Eng. Geol. Environ., 73(4), 997-1011. https://doi.org/10.1007/s10064-014-0645-1
Cited by
- Compaction techniques and construction parameters of loess as filling material vol.15, pp.6, 2018, https://doi.org/10.12989/gae.2018.15.6.1143
- Statistical Analysis of Deformation Laws of Deep Foundation Pits in Collapsible Loess vol.44, pp.10, 2019, https://doi.org/10.1007/s13369-019-03931-6
- Comprehensive strength deterioration model of compacted loess exposed to drying-wetting cycles vol.79, pp.1, 2016, https://doi.org/10.1007/s10064-019-01561-8
- Field Test Study of the Artificial Ground-Freezing Method Subsurface Excavation Construction of Watered Sandy Stratum in Collapsible Loess Area vol.2020, pp.None, 2016, https://doi.org/10.1155/2020/6665372
- Seismic Stability of Loess Tunnel with Rainfall Seepage vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/8147950
- Hysteretic behaviors of pile foundation for railway bridges in loess vol.20, pp.4, 2016, https://doi.org/10.12989/gae.2020.20.4.323
- Distribution Property of Shear Strength Parameters of Q2 and Q3 Loess in Northwest China and Its Application in Reliability Analysis of Natural and Filled Slopes vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/6671233
- Hydromechanical behavior and prediction of unsaturated loess over a wide suction range vol.26, pp.3, 2021, https://doi.org/10.12989/gae.2021.26.3.275