References
- Al-Bender, F., Lampaert, V. and Swevers, J. (2005), "The generalized Maxwell-slip model: a novel model for friction simulation and compensation", IEEE T. Automat. Control, 50(11), 1883-1887. https://doi.org/10.1109/TAC.2005.858676
- Ayoub, A. (2003), "Mixed formulation of nonlinear beam on foundation elements", Comput. Struct., 81(7), 411-421. https://doi.org/10.1016/S0045-7949(03)00015-4
- Batoz, J.L. and Dhatt, G. (1979), "Incremental displacement algorithms for nonlinear problems", Int. J. Numer. Meth. Eng., 14(8), 1262-1267. https://doi.org/10.1002/nme.1620140811
- Berger, E.J. (2002), "Friction modeling for dynamic system simulation", App. Mech. Rev., 55(6), 535-577. https://doi.org/10.1115/1.1501080
- Chen, W.Q., Lv, C.F. and Bian, Z.G. (2004), "A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation", Appl. Math. Model., 28(10), 877-890. https://doi.org/10.1016/j.apm.2004.04.001
- Comodromos, E.M. and Bareka, S.V. (2005), "Evaluation of negative skin friction effects in pile foundations using 3D nonlinear analysis", Comput. Geotech., 32(3), 210-221. https://doi.org/10.1016/j.compgeo.2005.01.006
- Comodromos, E. M. and Papadopoulou, M.C. (2013), "Explicit extension of the p-y method to pile groups in cohesive soils", Comput. Geotech., 47(1), 28-41. https://doi.org/10.1016/j.compgeo.2012.07.004
- Dall'Asta, A. and Zona, A. (2004), "Slip locking in finite elements for composite beams with deformable shear connection", Finite Elem. Anal. Des., 40(13-14), 1907-1930. https://doi.org/10.1016/j.finel.2004.01.007
- Dash, S.R., Govindaraju, L. and Bhattacharya, S. (2009), "A case study of damages of the Kandla Port and Customs Office tower supported on a mat-pile foundation in liquefied soils under the 2001 Bhuj earthquake", Soil Dyn. Earthq. Eng., 29(2), 333-346. https://doi.org/10.1016/j.soildyn.2008.03.004
- Dutta, S.C. and Roy, R. (2002), "A critical review on idealization and modeling for interaction among soilfoundation-structure system", Comput. Struct., 80(20), 1579-1594. https://doi.org/10.1016/S0045-7949(02)00115-3
- Feng, Z. and Cook, R.D. (1983), "Beam elements on two-parameter elastic foundation", J. Eng. Mech., ASCE, 109(6), 1390-1402. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:6(1390)
- Georgiadis, K. and Georgiadis, M. (2012), "Development of p-y curves for undrained response of piles near slopes", Comput. Geotech., 40(3), 53-61. https://doi.org/10.1016/j.compgeo.2011.09.005
- Han, S.M., Benaroya, H. and Wei, T. (1999), "Dynamics of transversely vibrating beams using four engineering theoroes", J. Sound Vib., 225(5), 935-988. https://doi.org/10.1006/jsvi.1999.2257
- Jones, R. and Xenophontos, J. (1977), "The vlasov foundation model", Int. J. Mech. Sci., 19(6), 317-323. https://doi.org/10.1016/0020-7403(77)90084-4
- Masing, G. (1923), Zur Heyn'schen Theorie der Verfestigung der Metalle durch verborgen elastische Spannungen, Springer.
- Mullapudi, R. and Ayoub, A. (2010), "Nonlinear finite element modeling of beams on two-parameter foundations", Comput. Geotech., 37(3), 334-342. https://doi.org/10.1016/j.compgeo.2009.11.006
- Nobili, A. (2013), "Superposition principle for the tensionless contact of a beam resting on a Winkler or a Pasternak foundation", J. Eng. Mech., ASCE, 139(10), 1470-1478. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000555
- Nogami, T. and O'Neill, M.W. (1985), "Beam on generalized two-parameter foundation", J. Eng. Mech., ASCE, 111(5), 664-679. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:5(664)
- Popp, K., Panning, L. and Sextro, W. (2003), "Vibration damping by friction forces: Theory and applications", J. Vib. Control, 9(3-4), 419-448. https://doi.org/10.1177/107754603030780
- Sapountzakis, E.J. and Kampitsis, A.E. (2011a), "Nonlinear analysis of shear deformable beam-columns partially supported on tensionless three-parameter foundation", Arch. Appl. Mech., 81(12), 1833-1851. https://doi.org/10.1007/s00419-011-0521-4
- Sapountzakis, E.J. and Kampitsis, A.E. (2011b), "Nonlinear response of shear deformable beams on tensionless nonlinear viscoelastic foundation under moving loads", J. Sound Vib., 330(22), 5410-5426. https://doi.org/10.1016/j.jsv.2011.06.009
- Sapountzakis, E.J. and Kampitsis, A.E. (2013), "Inelastic analysis of beams on two-parameter tensionless elastoplastic foundation", Eng. Struct., 48, 389-401. https://doi.org/10.1016/j.engstruct.2012.09.012
- Shirima, L.M. and Giger, M.W. (1992), "Timoshenko beam element resting on two-parameter elastic foundation", J. Eng. Mech., ASCE, 118(2), 280-295. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:2(280)
- Winkler, E. (1867), Theory of Elasticity and Strength, Dominicus Prague.
- Zhang, Y. and Murphy, K.D. (2013), "Tensionless contact of a finite beam: Concentrated load inside and outside the contact zone", Acta Mech. Sinica, 29(6), 836-839. https://doi.org/10.1007/s10409-013-0081-7
- Zhou, H., Luo, S. and Sun, D. (2011), "The bending analysis of a beam on elastic foundation with large deflection including the effects of horizontal friction", Eng. Mech., 28(1), 43-54.
- Zienkiewicz, O.C. and Taylor, R.L. (2000), The Finite Element Method, (Fifth Edition), Volume 2: Solid Mechanics, Butterworth-Heinemann.
Cited by
- Nonlinear frequency analysis of beams resting on elastic foundation using max-min approach vol.16, pp.4, 2016, https://doi.org/10.12989/gae.2018.16.4.355
- Modeling of Rail Tracks on Stone Column Reinforced Tensionless Foundations vol.5, pp.None, 2016, https://doi.org/10.3389/fbuil.2019.00122