Acknowledgement
Supported by : Duzce University
References
- Aali, K.A., Parsinejad, M. and Rahmani, B. (2009), "Estimation of saturation percentage of soil using multiple regression, ANN, and ANFIS techniques", Comput. Inform. Sci., 2(3), 127-136.
- Adhikary, B.B. and Mutsuyoshi, H. (2006), "Prediction of shear strength of steel fiber RC beams using neural networks", Constr. Build. Mater., 20(9), 801-811. https://doi.org/10.1016/j.conbuildmat.2005.01.047
- Al-Akhras, N.M. and Smadi, M.M. (2004), "Properties of tire rubber ash mortar", Cement Concrete Compos., 26, 821-826. https://doi.org/10.1016/j.cemconcomp.2004.01.004
- Atiş, C.D. and Bilim, C. (2007), "Wet and dry cured compressive strength of concrete containing ground granulated blast-furnace slag", Build. Envir., 42(8), 3060-3065. https://doi.org/10.1016/j.buildenv.2006.07.027
- Behnood, A., Verian, K.P. and Gharehveran, M.M. (2015), "Evaluation of the splitting tensile strength in plain and steel fiber-reinforced concrete based on the compressive strength", Constr. Build. Mater., 98, 519-529. https://doi.org/10.1016/j.conbuildmat.2015.08.124
- Beycioglu, A., Emiroglu, M., Kocak, Y. and Subasi, S. (2015), "Analyzing the compressive strength of clinker mortars using approximate reasoning approaches-ANN vs MLR", Comput. Concrete, 15(1), 89-101. https://doi.org/10.12989/cac.2015.15.1.089
- Crossin, E. (2015), "The greenhouse gas implications of using ground granulated blast furnace slag as a cement substitute", J.Clean. Product., 95, 101-108. https://doi.org/10.1016/j.jclepro.2015.02.082
- Deb, P.S., Nath, P. and Sarker, P.K. (2014), "The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature", Mater. Des., 62, 32-39. https://doi.org/10.1016/j.matdes.2014.05.001
- Dellinghausen L.M., Gastaldini A.L.G., Vanzin F.J. and Veiga K.K. (2012), "Total shrinkage, oxygen permeability, and chloride ion penetration in concrete made with white Portland cement and blast-furnace slag", Constr. Build. Mater., 37, 652-659. https://doi.org/10.1016/j.conbuildmat.2012.07.076
- Demir, F. (2008), "Prediction of elastic modulus of normal and high strength concrete by artificial neural network", Constr. Build. Mater., 22(7), 1428-1435. https://doi.org/10.1016/j.conbuildmat.2007.04.004
- Eiras, J.N., Segovia, F., Borrachero, M.V., Monzo, J., Bonilla, M. and Paya, J. (2014), "Physical and mechanical properties of foamed Portland cement composite containing crumb rubber from worn tires", Mater. Des., 59, 550-557. https://doi.org/10.1016/j.matdes.2014.03.021
- Gulbandilar, E. and Kocak, Y. (2013), "Prediction the effects of fly ash and silica fume on the setting time of Portland cement with fuzzy logic", Neur. Comput. Appl., 22, 1485-1491. https://doi.org/10.1007/s00521-012-1049-4
- Jang, J.S.R. (1996), "Input selection for ANFIS learning, Fuzzy Systems", Proceedings of the Fifth IEEE International Conference on, New Orleans, September.
- Komleh, H.E and Maghsoudi, A.A. (2015), "Prediction of curvature ductility factor for FRP strengthened RHSC beams using ANFIS and regression models", Comput. Concrete, 16(3), 399-414. https://doi.org/10.12989/cac.2015.16.3.399
- Mansouri, I. and Kisi, O. (2015), "Prediction of debonding strength for masonry elements retrofitted with FRP composites using neuro fuzzy and neural network approaches", Compos.: Part B, 70, 247-255. https://doi.org/10.1016/j.compositesb.2014.11.023
- Motamedi, S., Shamshirband, S., Petkovic, D. and Hashim, R. (2015), "Application of adaptive neuro-fuzzy technique to predict the unconfined compressive strength of PFA-sand-cement mixture", Powder Tech., 278, 278-285. https://doi.org/10.1016/j.powtec.2015.02.045
- Ozcan, F., Atis, C.D., Karahan, O., Uncuoglu, E. and Tanyildizi, H. (2009), "Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete", Adv. Eng. Softw., 40, 856-863. https://doi.org/10.1016/j.advengsoft.2009.01.005
- Parichatprecha, R. and Nimityongskul, P. (2009), "Analysis of durability of high performance concrete using artificial neural Networks", Constr. Build. Mater., 23, 910-917. https://doi.org/10.1016/j.conbuildmat.2008.04.015
- Sakthivel, P.B., Ravichandran, A. and Alagumurthi, N. (2016), "Modeling and pediction of flexural strength of hybrid mesh and fiber reinforced cement-based composites using Artificial Neural Network (ANN)", Int. J. Geomate, 10(1), 1623-1635.
- Siddiquea, R. and Bennacer, R. (2012), "Use of iron and steel industry by-product (GGBS) in cement paste and mortar. Resources", Conserv. Recy., 69, 29-34. https://doi.org/10.1016/j.resconrec.2012.09.002
- Subasi, S. (2009), "Prediction of mechanical properties of cement containing class C fly ash by using artificial neural network and regression technique", Sci. Res. Essay, 4(4), 289-297.
- Teng, S., Lim, T.Y.D. and Divsholi, B.S. (2013), "Durability and mechanical properties of high strength concrete incorporating ultra fine ground granulated blast-furnace slag", Constr. Build. Mater., 40, 875-881. https://doi.org/10.1016/j.conbuildmat.2012.11.052
- Topcu, İ.B. and Saridemir, M. (2008), "Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic", Comput. Mater. Sci., 41, 305-311. https://doi.org/10.1016/j.commatsci.2007.04.009
- Topcu, İ.B., Karakurt, C. and Saridemir, M. (2008), "Predicting the strength development of cements produced with different pozzolans by neural network and fuzzy logic", Mater. Des., 29(10), 1986-1991. https://doi.org/10.1016/j.matdes.2008.04.005
- Topcu, İ.B., Saridemir, M., Ozcan, F. and Severcan, M.H. (2009), "Prediction of long-term effects of GGBFS on compressive strength of concrete by artificial neural networks and fuzzy logic", Constr. Build. Mater., 23, 1279-1286. https://doi.org/10.1016/j.conbuildmat.2008.07.021
- Trtnik, G., Kavcic, F. and Turk, G. (2009), "Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks", Ultrasonics, 49(1), 53-60. https://doi.org/10.1016/j.ultras.2008.05.001
- TS EN 196-1 (2009), "Methods of testing cement-Part 1: Determination of strength", Turkish Standards, Ankara, Turkey.
- TS EN 197-1 (2012), "Cement- Part 1: Compositions and conformity criteria for common cements", Turkish Standards, Ankara, Turkey.
- Uygunoglu, T. and Topcu, I.B. (2010), "The role of scrap rubber particles on the drying shrinkage and mechanical properties of self-consolidating mortars", Constr. Build. Mater., 24(7), 1141-1150. https://doi.org/10.1016/j.conbuildmat.2009.12.027
- Wang, B., Man, T. and Jin, H. (2015), "Prediction of expansion behavior of self-stressing concrete by artificial neural networks and fuzzy inference systems", Constr. Build. Mater., 84, 184-191. https://doi.org/10.1016/j.conbuildmat.2015.03.059
- Yaprak, H., Karaci, A. and Demir, I. (2013), "Prediction of the effect of varying cure conditions and w/c ratio on the compressive strength of concrete using artificial neural networks", Neur. Comput. Appl., 22, 133-141.
- Yilmaz, A. and Degirmenci, N. (2009), "Possibility of using waste tire rubber and fly ash with Portland cement as construction materials", Waste Manage., 29, 1541-1546. https://doi.org/10.1016/j.wasman.2008.11.002
- Yung, W.H., Yung, L.C. and Hua, L.H. (2013), "A study of the durability properties of waste tire rubber applied to self-compacting concrete", Constr. Build. Mater., 41, 665-672. https://doi.org/10.1016/j.conbuildmat.2012.11.019
- Zhu, J., Zhong, Q., Chen, G. and Li, D. (2012), "Effect of particlesize of blast furnace slag on properties of portland cement", Procedia Eng., 27, 231-236.
Cited by
- Prediction of compressive strength of lightweight mortar exposed to sulfate attack vol.19, pp.2, 2016, https://doi.org/10.12989/cac.2017.19.2.217
- Prediction of expansion of electric arc furnace oxidizing slag mortar using MNLR and BPN vol.20, pp.1, 2016, https://doi.org/10.12989/cac.2017.20.1.111
- Effect of ground granulated blast furnace slag on time-dependent tensile strength of concrete vol.23, pp.2, 2016, https://doi.org/10.12989/cac.2019.23.2.133
- Experimental investigating the properties of fiber reinforced concrete by combining different fibers vol.25, pp.6, 2020, https://doi.org/10.12989/cac.2020.25.6.509
- Artificial neural network modeling for prediction of cutting forces in turning unreinforced and reinforced polyamide vol.34, pp.3, 2016, https://doi.org/10.1177/0892705719845712