References
- About Coal Ash-CCP FAQs (2014). American Coal Ash Association; p. Coal Combustion Products-Frequently Asked Questions.
- Atis, C. D. (2003). High-volume fly ash concrete with high strength and low drying shrinkage. Journal of Materials in Civil Engineering, 15(2), 153-156. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:2(153)
- Barbhuiya, S., Gbagbo, J., Russell, M., & Basheer, P. (2009). Properties of fly ash concrete modified with hydrated lime and silica fume. Construction and Building Materials, 23(10), 3233-3239. https://doi.org/10.1016/j.conbuildmat.2009.06.001
- Beltzung, F., Wittmann, F., & Holzer, L. (2001). Influence of composition of pore solution on drying shrinkage. Creep, Shrinkage and Durability Mechanics of Concrete and other Quasi-Brittle Materials, edited by Ulm, F-J, Bazant, ZP and Wittmann, FH, Elsevier Science Ltd.
-
Benhelal, E., Zahedi, G., Shamsaei, E., & Bahadori, A. (2013). Global strategies and potentials to curb
$CO_2$ emissions in cement industry. Journal of Cleaner Production, 51, 142-161. https://doi.org/10.1016/j.jclepro.2012.10.049 - Bentz D. P., & Weiss, W. J. (2011). Internal curing: a 2010 stateof-the-art review: US Department of Commerce, National Institute of Standards and Technology.
- Bjornstrom, J., Martinelli, A., Matic, A., Borjesson, L., & Panas, I. (2004). Accelerating effects of colloidal nanosilica for beneficial calcium-silicate-hydrate formation in cement. Chemical Physics Letters, 392(1), 242-248. https://doi.org/10.1016/j.cplett.2004.05.071
- Cabrera, J. G., Rivera-Villarreal, R. (1999). PRO 5: International RILEM Conference on the Role of Admixtures in High Performance Concrete: RILEM.
- Chindaprasirt, P., Jaturapitakkul, C., & Sinsiri, T. (2005). Effect of fly ash fineness on compressive strength and pore size of blended cement paste. Cement & Concrete Composites, 27(4), 425-428. https://doi.org/10.1016/j.cemconcomp.2004.07.003
- De Weerdt, K., Haha, M. B., Le Saout, G., Kjellsen, K. O., Justnes, H., & Lothenbach, B. (2011). Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cement and Concrete Research, 41(3), 279-291. https://doi.org/10.1016/j.cemconres.2010.11.014
- Dinakar, P., Babu, K., & Santhanam, M. (2008). Durability properties of high volume fly ash self compacting concretes. Cement & Concrete Composites, 30(10), 880-886. https://doi.org/10.1016/j.cemconcomp.2008.06.011
- El-Chabib, H., & Syed, A. (2012). Properties of self-consolidating concrete made with high volumes of supplementary cementitious materials. Journal of Materials in Civil Engineering, 25(11), 1579-1586.
- Erdogdu, K., & Turker, P. (1998). Effects of fly ash particle size on strength of Portland cement fly ash mortars. Cement and Concrete Research, 28(9), 1217-1222. https://doi.org/10.1016/S0008-8846(98)00116-1
- Hansen, T. C. (1990). Long-term strength of high fly ash concretes. Cement and Concrete Research, 20(2), 193-196. https://doi.org/10.1016/0008-8846(90)90071-5
- Heidrich C., Feuerborn H. -J., & Weir A. (2013). Coal Combustion Products: a Global Perspective. WOCA.
- Hill, R. L. (1994). The study of hydration of fly ash in the presence of calcium nitrate and calcium formate, University of North Texas, Denton, TX.
-
Hou, P., Wang, K., Qian, J., Kawashima, S., Kong, D., & Shah, S. P. (2012). Effects of colloidal
$nanoSiO_2$ on fly ash hydration. Cement & Concrete Composites, 34(10), 1095-1103. https://doi.org/10.1016/j.cemconcomp.2012.06.013 - Huang, C.-H., Lin, S.-K., Chang, C.-S., & Chen, H.-J. (2013). Mix proportions and mechanical properties of concrete containing very high-volume of Class F fly ash. Construction and Building Materials, 46, 71-78. https://doi.org/10.1016/j.conbuildmat.2013.04.016
- Islam, M. S. (2014). Comparison of ASR mitigation methodologies. International Journal of Concrete Structures and Materials, 8(4), 315-326. https://doi.org/10.1007/s40069-014-0081-4
- Jayakumar, M., & Abdullahi, M. S. (2011). Experimental study on sustainable concrete with the mixture of low calcium fly ash and lime as a partial replacement of cement. Advanced Materials Research, 250, 307-312.
-
Jo, B.-W., Kim, C.-H., Tae, G.-H., & Park, J.-B. (2007). Characteristics of cement mortar with nano-
$SiO_2$ particles. Construction and Building Materials, 21(6), 1351-1355. https://doi.org/10.1016/j.conbuildmat.2005.12.020 - Kasai, Y., Matsui, I., Fukushima, Y., & Kamohara, H. (1983). Air permeability and carbonation of blended cement mortars. ACI Special Publication, p. 79.
- Lazaro, A., Brouwers, H., Quercia, G., & Geus, J. (2012). The properties of amorphous nano-silica synthesized by the dissolution of olivine. Chemical Engineering Journal, 211, 112-121.
- Lazaro Garcia, A. A., Quercia, G. G., & Brouwers, H. (2014). Synthesis of nano-silica at low temperatures and its application in concrete. In Proceedings of the International Conference Non-Traditional Cement & Concrete V, June 16-19, 2014, Brno, Czech Republic.
- Li, G., & Wu, X. (2005). Influence of fly ash and its mean particle size on certain engineering properties of cement composite mortars. Cement and Concrete Research, 35(6), 1128-1134. https://doi.org/10.1016/j.cemconres.2004.08.014
- Liu, M. (2010). Self-compacting concrete with different levels of pulverized fuel ash. Construction and Building Materials, 24(7), 1245-1252. https://doi.org/10.1016/j.conbuildmat.2009.12.012
- Malhotra, V. M., Mehta, P. K., & Development SCMfS. (2002). High-performance, high-volume fly ash concrete: materials, mixture proportioning, properties, construction practice, and case histories: Suppementary Cementing Materials for Sustainable Development.
- Matschei, T., Lothenbach, B., & Glasser, F. (2007). The AFm phase in Portland cement. Cement and Concrete Research, 37(2), 118-130. https://doi.org/10.1016/j.cemconres.2006.10.010
- Mehta, P. K. (1986). Concrete. Structure, properties and materials
- Nagataki, S., & Ohga, H. (1992). Combined effect of carbonation and chloride on corrosion of reinforcement in fly ash concrete. ACI Special Publication.
- Nakarai, K., & Ishida, T. (2009). Numerical evaluation of influence of pozzolanic materials on shrinkage base on moisture state and pore structure. In Creep, Shrinkage and Durability Mechanics of Concrete and Concrete Structures, Two Volume Set: Proceedings of the CONCREEP 8 conference, Ise-Shima, Japan. CRC Press.
- Nonat, A. (2000). PRO 13: 2nd International RILEM Symposium on Hydration and Setting-Why Does Cement Set? An interdisciplinary approach: RILEM Publications.
- Paillere, A. M. (1994). Application of admixtures in concrete: CRC Press.
- Paya, J., Monzo, J., Peris-Mora, E., Borrachero, M., Tercero, R., & Pinillos, C. (1995). Early-strength development of Portland cement mortars containing air classified fly ashes. Cement and Concrete Research, 25(2), 449-456. https://doi.org/10.1016/0008-8846(95)00031-3
- Pepper, L., & Mather, B. (1959). Effectiveness of mineral admixtures in preventing excessive expansion of concrete due to alkali-aggregate reaction. American Soc Testing & Materials Proc.
- Persson, B. (1997). Self-desiccation and its importance in concrete technology. Materials and Structures, 30(5), 293-305. https://doi.org/10.1007/BF02486354
- Quercia, G., & Brouwers, H. (2010). Application of nano-silica (nS) in concrete mixtures. In 8th fib PhD symposium in Kgs Lyngby, Denmark, 2010 (pp. 431-436).
- Rashad, A. M. (2014). Seleem HE-DH, Shaheen AF. Effect of silica fume and slag on compressive strength and abrasion resistance of HVFA concrete. International Journal of Concrete. Structures and Materials, 8(1), 69-81. https://doi.org/10.1007/s40069-013-0051-2
- Reis, R., & Camoes, A. (2011). Eco-efficient ternary mixtures incorporating fly ash and metakaolin. In International Conference on Sustainability of Constructions - Towards a Better Built Environment. Proceedings of the Final Conference of COST Action C25, Feb 3-5, 2011, University of Innsbruck, Austria.
- Sahmaran, M., Yaman, I. O., & Tokyay, M. (2009). Transport and mechanical properties of self consolidating concrete with high volume fly ash. Cement & Concrete Composites, 31(2), 99-106. https://doi.org/10.1016/j.cemconcomp.2008.12.003
- Sata, V., Jaturapitakkul, C., & Kiattikomol, K. (2007). Influence of pozzolan from various by-product materials on mechanical properties of high-strength concrete. Construction and Building Materials, 21(7), 1589-1598. https://doi.org/10.1016/j.conbuildmat.2005.09.011
- Scherer, G. W. (1999). Crystallization in pores. Cement and Concrete Research, 29(8), 1347-1358. https://doi.org/10.1016/S0008-8846(99)00002-2
- Sellevold E, Radjy F (1983). Condensed silica fume (microsilica) in concrete: water demand and strength development. ACI Special Publication, p. 79.
- Shaikh, F., Supit, S., & Sarker, P. (2014). A study on the effect of nano silica on compressive strength of high volume fly ash mortars and concretes. Materials and Design, 60, 433-442. https://doi.org/10.1016/j.matdes.2014.04.025
- Singh, L. P., Goel, A., Bhattachharyya, S. K., Ahalawat, S., Sharma, U., & Mishra, G. (2015). Effect of Morphology and Dispersibility of Silica Nanoparticles on the Mechanical Behaviour of Cement Mortar. International Journal of Concrete Structures and Materials, 9, 1-11. https://doi.org/10.1007/s40069-014-0087-y
- Sivasundaram, V., Carette, G., & Malhotra, V. (1990). Longterm strength development of high-volume fly ash concrete. Cement & Concrete Composites, 12(4), 263-270. https://doi.org/10.1016/0958-9465(90)90005-I
- Tazawa, E., & Miyazawa, S. (1993). Autogenous shrinkage of concrete and its importance in concrete technology. In RILEM Proceedings (p. 159). Chapman & Hall.
- Turanli, L., Uzal, B., & Bektas, F. (2005). Effect of large amounts of natural pozzolan addition on properties of blended cements. Cement and Concrete Research, 35(6), 1106-1111. https://doi.org/10.1016/j.cemconres.2004.07.022
- Wei, X., Zhu, H., Li, G., Zhang, C., & Xiao, L. (2007). Properties of high volume fly ash concrete compensated by metakaolin or silica fume. Journal of Wuhan University of Technology-Mater Science, 22(4), 728-732. https://doi.org/10.1007/s11595-006-4728-0
- Zhang, M.-H., & Gjorv, O. E. (1991). Effect of silica fume on pore structure and chloride diffusivity of low parosity cement pastes. Cement and Concrete Research, 21(6), 1006-1014. https://doi.org/10.1016/0008-8846(91)90060-U
- Zhang, M.-H., & Islam, J. (2012). Use of nano-silica to reduce setting time and increase early strength of concretes with high volumes of fly ash or slag. Construction and Building Materials, 29, 573-580. https://doi.org/10.1016/j.conbuildmat.2011.11.013
Cited by
- Acceleration of Intended Pozzolanic Reaction under Initial Thermal Treatment for Developing Cementless Fly Ash Based Mortar vol.10, pp.3, 2016, https://doi.org/10.3390/ma10030225
- Mechanical Properties of Steam Cured High-Strength Steel Fiber-Reinforced Concrete with High-Volume Blast Furnace Slag vol.11, pp.2, 2016, https://doi.org/10.1007/s40069-017-0200-0
- Influence of selected activating methods on hydration processes of mixtures containing high and very high amount of fly ash : A review vol.133, pp.1, 2016, https://doi.org/10.1007/s10973-017-6915-y
- Nanosilica Modified High-Volume Fly Ash and Slag Cement Composite: Environmentally Friendly Alternative to OPC vol.30, pp.4, 2016, https://doi.org/10.1061/(asce)mt.1943-5533.0002220
- Improvement of Early-Age Strength of High-Volume Siliceous Fly Ash Concrete with Nanosilica - A Review vol.7, pp.1, 2016, https://doi.org/10.1520/acem20180065
- Applications of Nano palm oil fuel ash and Nano fly ash in concrete vol.342, pp.None, 2018, https://doi.org/10.1088/1757-899x/342/1/012068
- Fly ash from coal combustion: Dependence of the concentration of various elements on the particle size vol.228, pp.None, 2016, https://doi.org/10.1016/j.fuel.2018.04.136
- Durability of Mortar Incorporating Ferronickel Slag Aggregate and Supplementary Cementitious Materials Subjected to Wet-Dry Cycles vol.12, pp.1, 2018, https://doi.org/10.1186/s40069-018-0264-5
- Analysis of Active Ion-Leaching Behavior and the Reaction Mechanism During Alkali Activation of Low-Calcium Fly Ash vol.12, pp.1, 2016, https://doi.org/10.1186/s40069-018-0282-3
- State-of-the-Art of Cellulose Nanocrystals and Optimal Method for their Dispersion for Construction-Related Applications vol.9, pp.3, 2016, https://doi.org/10.3390/app9030426
- Strength enhancement of concrete incorporating alccofine and SNF based admixture vol.9, pp.4, 2020, https://doi.org/10.12989/acc.2020.9.4.345
- A quantitative study on the effect of nano SiO2, nano Al2O3 and nano CaCO3 on the physicochemical properties of very high volume fly ash cement composite vol.24, pp.6, 2016, https://doi.org/10.1080/19648189.2017.1418681
- Influence of Integration of Phase Change Materials on Hydration and Microstructure Properties of Nanosilica Admixed Cementitious Mortar vol.32, pp.6, 2020, https://doi.org/10.1061/(asce)mt.1943-5533.0003178
- Performance of high volume fly ash concrete incorporating additives: A systematic literature review vol.258, pp.None, 2020, https://doi.org/10.1016/j.conbuildmat.2020.120606
- Influence of quartz powder and silica fume on the performance of Portland cement vol.10, pp.1, 2016, https://doi.org/10.1038/s41598-020-78567-w
- Recycling biosolids as cement composites in raw, pyrolyzed and ashed forms: A waste utilisation approach to support circular economy vol.38, pp.None, 2016, https://doi.org/10.1016/j.jobe.2021.102199
- Practical Rubber Pre-Treatment Approch for Concrete Use-An Experimental Study vol.5, pp.6, 2016, https://doi.org/10.3390/jcs5060143
- Self-Compaction concrete behaviour containing nano fly ash used in rigid pavement vol.779, pp.1, 2021, https://doi.org/10.1088/1755-1315/779/1/012018
- Pozzolanic reactivity and drying shrinkage characteristics of optimized blended cementitious composites comprising of Nano-Silica particles vol.316, pp.None, 2016, https://doi.org/10.1016/j.conbuildmat.2021.125796
- Modeling of hydration products and strength development for high-volume fly ash binders vol.320, pp.None, 2016, https://doi.org/10.1016/j.conbuildmat.2021.126228