References
- Ahmed, S., & Imran, A. (2006). A study on properties of polypropylene fiber reinforced concrete. In: Proceedings of the 31st conference on Our World in Concrete & Structures, Singapore.
- Alberti, M. G., Enfedaque, A., & Galvez, J. C. (2014). On the mechanical properties and fracture behavior of polyolefin fiber-reinforced self-compacting concrete. Construction and Building Materials, 55, 274-288. https://doi.org/10.1016/j.conbuildmat.2014.01.024
- Aslani, F., & Nejadi, S. (2013). Self-compacting concrete incorporating steel and polypropylene fibers: Compressive and tensile strengths, moduli of elasticity and rupture, compressive stress-strain curve, and energy dissipated under compression. Composites Part B Engineering, 53, 121-133. https://doi.org/10.1016/j.compositesb.2013.04.044
- ASTM C 39/C39 M-04. (2004). Standard test method for compressive strength of cylindrical concrete specimens. West Conshohocken, PA: Annual Book ASTM Standards.
- Barros, J. A., & Figueiras, J. A. (1999). Flexural behavior of SFRC: Testing and modeling. Journal of Materials in Civil Engineering, 11(4), 331-339. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:4(331)
- Bentur, A., & Mindess, S. (1990). Fiber reinforced cementitious composites. London, UK: Elsevier.
- Cheng, F. P., Kodur, V. K. R., & Wang, T. C. (2004). Stressstrain curves for high strength concrete at elevated temperatures. Journal of Materials in Civil Engineering, 16(1), 84-90. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:1(84)
- Grediac, M. (2004). The use of full-field measurement methods in composite material characterization: interest and limitations. Composites Part A, 2004(35), 751-761.
- Horiguchi, T. (2005). Combination of synthetic and steel fibres reinforcement for fire resistance of high strength concrete. In: MichaelP (Ed.) Proceedings of Central European Congress on Concrete Engineering, 8-9 September 2005, Graz, pp. 59-64.
- Hughes, B. P., & Fattuhi, N. I. (1976). Improving the toughness of high strength cement paste with fiber reinforcement. Composite, 7(4), 185-188. https://doi.org/10.1016/0010-4361(76)90067-7
- IS 10262. (2009). Concrete mix-properotioning guidelines. New Delhi: Buerau of Indian Standards.
- IS: 456. (2000). Plain and reinforced concrete-code of practice (fourth revision). New Delhi, India: Bureau of Indian Standards.
- Li, V. (2002). Large volume, high-performance applications of fibers in civil engineering. Journal of Applied Polymer Science, 83, 660-686. https://doi.org/10.1002/app.2263
- Mindess, S., & Vondran, G. (1988). Properties of concrete reinforced with fibrillated polypropylene fibres under impact loading. Cement and Concrete Research, 18(1), 109-115. https://doi.org/10.1016/0008-8846(88)90127-5
- Mobasher, B., & Li, C. Y. (1996). Mechanical properties of hybrid cement-based composites. ACI Materials Journal, 93(3), 284-293.
-
Noumowe, A. (2005). Mechanical properties and microstructure of high strength concrete containing polypropylene fibres exposed to temperatures up to
$200^{\circ}C$ . Cement and Concrete Research, 35(11), 2192-2198. https://doi.org/10.1016/j.cemconres.2005.03.007 - Olivito, R. S., & Zuccarello, F. A. (2010). An experimental study on the tensile strength of steel fiber reinforced concrete. Composites Part B Engineering, 41(3), 246-255. https://doi.org/10.1016/j.compositesb.2009.12.003
- Orteu, J.-J., Cutard, T., Garcia, D., Cailleux, E., & Robert, L. (2007). Application of stereovision to the mechanical characterisation of ceramic refractories reinforced with metallic fibres. Strain, 43(2), 1-13. https://doi.org/10.1111/j.1475-1305.2007.00309.x
- Poon, C. (2004). Performance concrete subjected to elevated temperatures. Cement and Concrete Research, 34(12), 2215-2222. https://doi.org/10.1016/j.cemconres.2004.02.011
- Puyo-Pain, M., & Lamon, J. (2005). Determination of elastic moduli and Poisson coefficient of thin silicon-based joint using digital image correlation. Proceedings of the 29th International Conference on advanced Ceramics and Composites, 2005, Cocoa Beach, FL.
- Rasheed, M. A., & Prakash, S. S. (2015). Mechanical behavior of hybrid fiber reinforced cellular light weight concrete for structural applications of masonry. Journal of Building Materials and Construction, Elsevier, 98, 631-640. doi: 10.1016/j.conbuildmat.2015.08.137.
- Rastogi, K. P. (2000). Photomechanics, topics in applied physics. New York, NY: Springer. 2000.
- Robert, L., Nazaret, F., Cutard, T., & Orteu, J. J. (2007). Use of 3-D digital image correlation to characterize the mechanical behavior of a fiber reinforced refractory castable. Experimental Mechanics, 47(6), 761-773. https://doi.org/10.1007/s11340-007-9062-8
- Song, P. S., Hwang, S., & Sheu, B. C. (2005). Strength properties of nylon-and polypropylene-fiber-reinforced concretes. Cement and Concrete Research, 35(8), 1546-1550. https://doi.org/10.1016/j.cemconres.2004.06.033
- Soroushian, P., Khan, A., & Hsu, J. W. (1992). Mechanical properties of concrete materials reinforced with polypropylene or polyethylene fibers. ACI Materials Journal, 89(6), 535-540.
- Soulioti, D. V., Barkoula, N. M., Paipetis, A., & Matikas, T. E. (2011). Effects of fibre geometry and volume fraction on the flexural behaviour of steel-fibre reinforced concrete. Strain, 47(S1), 535-541. https://doi.org/10.1111/j.1475-1305.2009.00652.x
- Surrel, Y. (2004). Full-field optical methods for mechanical engineering: essential concepts to find one's way. 2nd International Conference on Composites Testing and Model Identification, 2004, Bristol, UK.
- Sutton, M., Orteu, J. J., & Schreier, H. W. (2009). Image correlation for shape and deformation measurements, basic concepts, theory and applications. New York, NY: Springer.
- Xiao, J., & Falkner, H. (2006). On residual strength of highperformance concrete with and without polypropylene fibers at elevated temperatures. Fire Safety Journal, 41, 115-121. https://doi.org/10.1016/j.firesaf.2005.11.004
Cited by
- Extended Digital Image Correlation Method for Mapping Multiscale Damage in Concrete vol.29, pp.10, 2016, https://doi.org/10.1061/(asce)mt.1943-5533.0002030
- Pull-Out Behaviour of Hooked End Steel Fibres Embedded in Ultra-high Performance Mortar with Various W/B Ratios vol.11, pp.2, 2016, https://doi.org/10.1007/s40069-017-0193-8
- Hoop Stress-Strain in Fiber-Reinforced Cementitious Composite Thin-Walled Cylindrical Shells vol.30, pp.10, 2016, https://doi.org/10.1061/(asce)mt.1943-5533.0002428
- Behavior of High-Strength Polypropylene Fiber-Reinforced Self-Compacting Concrete Exposed to High Temperatures vol.30, pp.11, 2016, https://doi.org/10.1061/(asce)mt.1943-5533.0002491
- Behavior of hybrid-synthetic fiber reinforced cellular lightweight concrete under uniaxial tension – Experimental and analytical studies vol.162, pp.None, 2016, https://doi.org/10.1016/j.conbuildmat.2017.12.095
- Efficiency of steel and macro-synthetic structural fibers on the flexure-shear behaviour of prestressed concrete beams vol.171, pp.None, 2016, https://doi.org/10.1016/j.engstruct.2018.05.067
- Improving measurement accuracy of Brazilian tensile strength of rock by digital image correlation vol.89, pp.11, 2016, https://doi.org/10.1063/1.5065541
- A DIC-Based Study on Compressive Responses of Concrete after Exposure to Elevated Temperatures vol.12, pp.13, 2016, https://doi.org/10.3390/ma12132044
- Crack Propagation Analysis of Synthetic vs. Steel vs. Hybrid Fibre-Reinforced Concrete Beams Using Digital Image Correlation Technique vol.14, pp.1, 2020, https://doi.org/10.1186/s40069-020-00427-8
- Experimental and numerical studies on shear behaviour of macro-synthetic fibre reinforced prestressed concrete beams vol.291, pp.None, 2021, https://doi.org/10.1016/j.conbuildmat.2021.123313
- Flexural Tensile Strength of Concrete with Synthetic Fibers vol.14, pp.16, 2016, https://doi.org/10.3390/ma14164428
- Real-time strain monitoring of reinforced concrete under the attacks of sulphate and chloride ions based on XCT and DIC methods vol.125, pp.None, 2016, https://doi.org/10.1016/j.cemconcomp.2021.104314