과제정보
연구 과제 주관 기관 : National Science Foundation
참고문헌
- ACI. (2014). Building code requirements for structural concrete. ACI 318-14. Farmington Hills, MI: American Concrete Society.
- Alashker, Y., Li, H., & El-Tawil, S. (2011). Approximations in progressive collapse modeling. Journal of Structural Engineering, 137(Special Issue: Commemorating 10 Years of Research Since 9/11), 914-924. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000452
- Arora, J. S., Haskell, D. F., & Govil, A. K. (1980). Optimal design of large structures for damage tolerance. AIAA Journal, 18(5), 563-570. https://doi.org/10.2514/3.7669
- ASCE. (2010). Minimum design loads for buildings and other structures. ASCE-7, 2010. Reston, VA: American Society of Civil Engineers.
- Bao, Y., & Kunnath, S. K. (2010). Simplified progressive collapse simulation of RC frame-wall structures. Engineering Structures, 32(10), 3153-3162. https://doi.org/10.1016/j.engstruct.2010.06.003
- Bao, Y., Kunnath, S., El-Tawil, S., & Lew, H. (2008). Macromodel-based simulation of progressive collapse: RC frame structures. Journal of Structural Engineering, 134(7), 1079-1091. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:7(1079)
- Bao, Y., Lew, H. S., & Kunnath, S. K. (2014). Modeling of reinforced concrete assemblies under column-removal scenario. Journal of Structural Engineering, 140(1), 04013027. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000778
- Dusenberry, D., & Hamburger, R. (2006). Practical means for energy-based analyses of disproportionate collapse potential. Journal of Performance of Constructed Facilities, 20, 336-348. https://doi.org/10.1061/(ASCE)0887-3828(2006)20:4(336)
- El-Tawil, S., Li, H., & Kunnath, S. (2014). Computational simulation of gravity-induced progressive collapse of steelframe buildings: Current trends and future research needs. Journal of Structural Engineering, 140(8), A2513001. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000897
- Gomes, A., & Appleton, J. (1997). Nonlinear cyclic stress-strain relationship of reinforcing bars including buckling. Engineering Structures, 19(10), 822-826. https://doi.org/10.1016/S0141-0296(97)00166-1
- Gross, J. L., & McGuire, W. (1983). Progressive collapse resistant design. Journal of Structural Engineering, 109, 1-15. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:1(1)
- Hallquist, J. (2007). LS-DYNA keyword user's manual. Livermore, CA: Livermore Software Technology Corporation.
- Jeong, J.-P., & Kim, W. (2014). Shear resistant mechanism into base components: Beam action and arch action in shearcritical RC members. International Journal of Concrete Structures and Materials, 8(1), 1-14. https://doi.org/10.1007/s40069-013-0064-x
- Kaewkulchai, G., & Williamson, E. B. (2004). Beam element formulation and solution procedure for dynamic progressive collapse analysis. Computers and Structures, 82(7-8), 639-651. https://doi.org/10.1016/j.compstruc.2003.12.001
- Khandelwal, K., & El-Tawil, S. (2007). Collapse behavior of steel special moment resisting frame connections. Journal of Structural Engineering, 133(5), 646-655. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:5(646)
- Kim, H. S., Kim, J., & An, D. W. (2009). Development of integrated system for progressive collapse analysis of building structures considering dynamic effects. Advances in Engineering Software, 40(1), 1-8. https://doi.org/10.1016/j.advengsoft.2008.03.011
- Krauthammer, T., Hall, R. L., Woodson, S. C., Baylot, J. T., Hayes, J. R., & Sohn, Y. (2003). Development of progressive collapse analysis procedure and condition assessment for structures. In National workshop on prevention of progressive collapse. Washington, DC: Multihazard Mitigation Council of the National Institute of Building Sciences.
- Kwasniewski, L. (2010). Nonlinear dynamic simulations of progressive collapse for a multistory building. Engineering Structures, 32(5), 1223-1235. https://doi.org/10.1016/j.engstruct.2009.12.048
- Lewicki, B., & Olesen, S. O. (1974). Limiting the possibility of progressive collapse. Building Research and Practice, 2(1), 10-13. https://doi.org/10.1080/09613217408550280
- Li, H., & El-Tawil, S. (2014). Three-dimensional effects and collapse resistance mechanisms in steel frame buildings. Journal of Structural Engineering, 140(8), A4014017. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000839
- Li, Y., Lu, Z., Guan, H., & Ye, L. (2014). Progressive collapse resistance demand of reinforced concrete frames under catenary mechanism. ACI Structural Journal, 111, 433-439.
- Mander, J. B., Priestley, M. J. N., & Park, R. (1988). Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
- Marjanishvili, S., & Agnew, E. (2006). Comparison of various procedures for progressive collapse analysis. Journal of Performance of Constructed Facilities, 20, 365-374. https://doi.org/10.1061/(ASCE)0887-3828(2006)20:4(365)
- McConnel, R. E., & Kelly, S. J. (1983). Structural aspects of progressive collapse of warehouse racking. Engineering Structures, 61A(11), 343-347.
- Nurhuda, I., & Lie, H. A. (2004). Three dimensionally analysis of flat plate structures by equivalent grid method. In 29th Conference on our world in concrete and structures, 25-26 August 2004, Singapore.
- OpenSees. (2015). Open system for earthquake engineering simulation. Berkeley, CA: University of California. Retrieved March 4, 2015, from http://opensees.berkeley.edu/.
- Pearson, C., & Delatte, N. (2005). Ronan point apartment tower collapse and its effect on building codes. Journal of Performance of Constructed Facilities, 19(5), 172-177. https://doi.org/10.1061/(ASCE)0887-3828(2005)19:2(172)
- Ruth, P., Marchand, K., & Williamson, E. (2006). Static equivalency in progressive collapse alternate path analysis:Reducing conservatism while retaining structural integrity. Journal of Performance of Constructed Facilities, 20, 349-364. https://doi.org/10.1061/(ASCE)0887-3828(2006)20:4(349)
- Sasani, M., Kazemi, A., Sagiroglu, S., & Forest, S. (2011). Progressive collapse resistance of an actual 11-story structure subjected to severe initial damage. Journal of Structural Engineering, ASCE, 137(9), 893-902. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000418
- Sasani, M., & Kropelnicki, J. (2008). Progressive collapse analysis of an RC structure. The Structural Design of Tall and Special Buildings, 17, 757-771. https://doi.org/10.1002/tal.375
- Scott, B. D., Park, R., & Priestley, M. J. N. (1982). Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates. Journal of the American Concrete Institute, 79, 13-27.
- Tian, Y., Chen, J., Said, A., & Zhao, J. (2012). Nonlinear modeling of flat-plate structures using grid beam elements. Computers and Concrete, 10(5), 489-505. https://doi.org/10.12989/cac.2012.10.5.489
- Xiao, Y., Kunnath, S. K., Li, F. W., Zhao, Y. B., Lew, H. S., & Bao, Y. (2015). Collapse test of a 3-story 3-span half-scale RC frame building. ACI Structural Journal, 112(4), 429-438.
- Yi, W.-J., He, Q.-F., Xiao, Y., & Kunnath, S. K. (2008). Experimental study on progressive collapse-resistant behavior of reinforced concrete frame structures. ACI Structural Journal, 105(4), 433-439.
- Yi, W.-J., Zhang, F. Z., & Kunnath, S. K. (2014). Progressive collapse performance of RC flat plate frame structures. Journal of Structural Engineering. doi:10.1061/(ASCE)ST.1943-541X.0000963.
- Yu, M., Zha, X., & Ye, J. (2010). The influence of joints and composite floor slabs on effective tying of steel structures in preventing progressive collapse. Journal of Constructional Steel Research, 66(3), 442-451. https://doi.org/10.1016/j.jcsr.2009.10.008
피인용 문헌
- Analysing Vibrations of Dissipative Structures with Connection Disruption vol.262, pp.None, 2016, https://doi.org/10.1088/1757-899x/262/1/012223
- Pull-Out Behaviour of Hooked End Steel Fibres Embedded in Ultra-high Performance Mortar with Various W/B Ratios vol.11, pp.2, 2016, https://doi.org/10.1007/s40069-017-0193-8
- Experimental and Measurement Methods for the Small-Scale Model Testing of Lateral and Torsional Stability vol.11, pp.2, 2016, https://doi.org/10.1007/s40069-017-0198-3
- Nonlocal Formulation for Numerical Analysis of Post-Blast Behavior of RC Columns vol.11, pp.2, 2016, https://doi.org/10.1007/s40069-017-0201-z
- Seismic Performance of Exterior RC Beam–Column Joints Retrofitted using Various Retrofit Solutions vol.11, pp.3, 2016, https://doi.org/10.1007/s40069-017-0203-x
- Flexural, Compressive Arch, and Catenary Mechanisms in Pseudostatic Progressive Collapse Analysis vol.32, pp.1, 2016, https://doi.org/10.1061/(asce)cf.1943-5509.0001110
- Dynamic response analysis of steel frame with a sudden removal first floor column vol.34, pp.2, 2016, https://doi.org/10.3233/jifs-169407
- Experimental study of repaired RC columns subjected to uniaxial and biaxial horizontal loading and variable axial load with longitudinal reinforcement welded steel bars solutions vol.155, pp.None, 2016, https://doi.org/10.1016/j.engstruct.2017.11.043
- Advances in Computational Simulation of Gravity-Induced Disproportionate Collapse of RC Frame Buildings vol.144, pp.2, 2016, https://doi.org/10.1061/(asce)st.1943-541x.0001938
- Modelling of Stirrup Confinement Effects in RC Layered Beam Finite Elements Using a 3D Yield Criterion and Transversal Equilibrium Constraints vol.12, pp.1, 2018, https://doi.org/10.1186/s40069-018-0278-z
- CASCO: a simulator of load paths in 2D frames during progressive collapse vol.2, pp.9, 2016, https://doi.org/10.1007/s42452-020-03201-3
- Numerical studies on the progressive collapse resistance of multi-story RC buildings with and without exterior masonry walls vol.28, pp.None, 2016, https://doi.org/10.1016/j.istruc.2020.07.049
- Assessment of Building Robustness against Disproportionate Collapse vol.146, pp.12, 2016, https://doi.org/10.1061/(asce)st.1943-541x.0002820
- Analysis of RC structures with different design mistakes under explosive based demolition vol.22, pp.3, 2016, https://doi.org/10.1002/suco.201900367
- Effect of progressive collapse of central column on the push-down response of two-span beam-column substructures vol.248, pp.None, 2016, https://doi.org/10.1016/j.engstruct.2021.113119
- Evaluation and Enhancement of Robustness for Reinforced Concrete Buildings vol.148, pp.1, 2016, https://doi.org/10.1061/(asce)st.1943-541x.0003226