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SOME RIGIDITY THEOREMS FOR SELF-SHRINKERS OF
THE MEAN CURVATURE FLOW

HEez1 LiN

ABSTRACT. In this paper, we first prove some Liouville type theorems
for elliptic inequalities on weighted manifolds which support a weighted
Sobolev-type inequality. Secondly, applying the Liouville type theorems
to self-shrinkers, we obtain some global rigidity theorems.

1. Introduction

A one-parameter family M, (¢ < 0) of hypersurfaces in R"*! flows by mean
curvature if

(1.1) (Oyx)*t = —HT,

where L denotes the projection onto the normal bundle NM, 7 is the outward
unit normal and the mean curvature H is given by H = div7.

Let M"™ be an n-dimensional Riemannian manifold, and = : M™ — R"*+!
be an isometric immersion. A self-shrinker M™ as a hypersurface satisfies the
following equation for the mean curvature and the normal
(1.2) P auy

2

Such hypersurface corresponds to expanding homothetic solution of mean cur-
vature flow. The simplest examples are R”, S*(v/2n), and S¥(v/2k) x R"*,
0 < k < n. Self-shrinkers play an important role in the study of mean curva-
ture flow, not only are they the simplest examples (those where later time slices
are rescalings of earlier, that is, if a hypersurface X satisfies (1.2), then /—t%
flows by mean curvature flow (1.1)), but they also describe all possible blow
ups at a given singularity of a mean curvature flow. Thus, the classification of
type-1 blow ups of a mean curvature flow is equivalent to the classification of
self-shrinkers.

For the rigidity property of self-shrinker, there are some results in recent
years. In the graphical case, K. Ecker and G. Huisken [7] showed that an
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entire graphical self-shrinker with polynomial volume growth is a hyperplane.
L. Wang [13] removed the condition of polynomial volume growth in Ecker-
Huisken’s theorem. This was later generalized to higher codimension by Q. Ding
and Z. Z. Wang [6] under the condition of flat normal bundle.

In the general submanifold case, Colding and Minicozzi [4] gave the clas-
sification of self-shrinkers with H > 0, they proved that S¥(v/2k) x R"*,
0 < k < n, are the only smooth complete embedded self-shrinkers without
boundary, with polynomial volume growth, and H > 0 in R"*!. Based on
an identity of [4], N. Q. Le and N. Sesum [9] proved that if a hypersurface
M™ c R*"*! is a smooth complete embedded self-shrinker without boundary
and with polynomial volume growth, and satisfies |[A|> < %, where |A| de-
notes the norm of the second fundamental of M™, then M" is a hyperplane.
H. D. Cao and H. Z. Li [1] improved their results to higher codimensional self-
shrinkers with |A|? < J and proved that they must be S¥(v/2k) x R*~* ¢ R+
with 0 < k < n. (Note that, our definition of self-shrinker is slightly different
from their’s. In [1] and [9], the assumption is |A|?> < 1, which in our notation
becomes |A[? < 1.) For the second gap of [A[?>, Q. Ding and Y. L. Xin [5]
proved that if the self-shrinker M™ C R"*! has polynomial volume growth and
|A|? < 140.011, then [A]* = 1. Q. M. Cheng and G. X. Wei [3] improved their
results to [A|> < 1 + % and proved that M is isometric to S*(V2k) x R*F,
0<k<n.

Recently, M. Rimoldi [11] proved Colding and Minicozzi’s theorem under

the conditions that H > 0 and |4] € LQ(e’%dvol), without the condition

“polynomial volume growth”. For the global rigidity property of self-shrinkers,
Q. Ding and Y. L. Xin [5] proved that if | A 1(ar) < 1/ 30z, where £ is a con-
stant in Sobolev inequality, then the self-shrinker M must be a linear subspace.

In this paper, we are interested in the rigidity problem of self-shrinkers in
Euclidean space. To achieve this, we first get some more general LP vanishing
results for elliptic inequalities which come from various geometric situation,
under the existence of a weighted Sobolev-type inequality. Our results are
proved in a more general setting of weighted manifolds and, therefore, applies

to different geometric situations; see Theorem 4.1 and Theorem 4.2.

2. Preliminaries

A weighted manifold, also known in the literature as a smooth metric mea-
sure space, is a triple (M, g;e~7dv,), where (M, g) is an n-dimensional Rie-
mannian manifold with metric g, dv, is the canonical Riemannian volume el-
ement and f is a smooth function on M. Associated to a weighted manifold
(M, g;e=dv,), we define a weighted Laplacian by

Aju = Lu— (Vf,Vu), = el divie ™ Vu)
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for w € C?(M). Then Ay is self-adjoint in a weighted L? space, that is,

/ ul\ pve~ ! dv = —/ (Vu, Voye ™l dv
M

M
for any u € CY(M) and v € C?(M).
Self-shrinkers in R"*! can be characterized as minimal hypersurfaces for the
* 2
conformally changed metric g;; = 6_%615, thus we are naturally led to think

2

of a self-shrinker z : M™ — R"*! as a weighted manifold (M™, e_%dv), whose
geometry is governed by analytic properties of the following linear operator £
which was first introduced by Colding and Minicozzi ([4])

1

2
where div is the divergence on M". The operator £ plays an important role in
the study of self-shrinkers.

For our later use, we collect the following two Simons’ type identities (cf.

[4])

Lemma 2.1. Let M™ — Rt be a complete immersed self-shrinker. Then we

2
[z

(2, V() = e div(e=F v()),

L=ALz=A

have

1
(2.1) LIA]? = 2|VAP + 2|A|2(5 —14P%),
(2.2) L|H> =2|VH|* + |H|* — 2|H*|A]*.

For our purposes, it will be more appropriate to deal with the traceless part

of A, which is given by ¥ = A — HI, with I the identity operator on T'M.
Then, tr(¥) =0 and

H2

[0)? = tr(0?) = JAP = — >0

n
with equality at p € M if and only if p is an umbilical point. Thus, ¥ = 0 is
equivalent to the fact that the immersion is totally umbilical. For that reason,
U is also called the total umbilicity tensor of M. Combining (2.1) and (2.2),
we get

HI? H2 2
LIV]? =2 (|VA|2 - M) + (|A|2 —~ —) —2|A|* + o IHE | A2
n n n
2 2 2 2
ZQ'V(A—EI) +<|A|2_£) {1—£—2(|A|2—£)}
n n n n
H_|? m? 212 H2
cafoa i+ (- 2) o 2 s - 2.
n n n n

where we have used the Kato inequality in the last inequality. Therefore,

2H?
(2.3) L)% > 2|V|T|? + |T|? (1 - 2|\1/|2) .
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3. Liouville type theorems on weighted manifolds

In this section, we study the LP vanishing property of a special type PDEs
on weighted manifolds which support a weighted Sobolev type inequality. Some
results of the next section rely on the following weighted version of Liouville-
type theorems which might be interesting by itself.

Theorem 3.1. Let (M", g;dvy) be a complete weighted Riemannian manifold
with dvy = e_fdvg and let @ € Lipjoc(M) be a distributional solution of

(3.1) Ap®? > a|VO|2 + &2 (vh — u)

for some functions ¥,u > 0 and constant a > 0. Suppose for 0 < g < 1, the
Sobolev-type inequality of the form

(3.2) (/M qs%dvf)lﬁ < C/M |Vo|*dvy +D/M ¢*dvy, ¥ ¢ € C5(M).

holds for C > 0 and D € R. Assume that ¥ > Z(8a — 160 + 4an® — e),

H(I)HLé(d ) < 00 and HuHL%(d ) < %(80& — 1602 + 4aa® — €) with a > 0 and
v fo
0 < e <8a— 1602+ 4aa’. Then ® = 0.

Proof. For R > 0, let us choose a cut-off function pr € C°(M) satisfying the
properties that

1 on Bg(q);

wr(@) = {o on M\ Bag(q)

and
2
IVor| < 7 " Bsr(q) \ Br(q),

where Br(q) is the geodesic ball in M with radius R centered at ¢ € M.
Multiplying ¢%®=~2¢~/ on both sides of inequality (3.1) and integrating by
parts, we get

0> 4/ <,0R<I)é*1<V<pR,V<I>>dvf+(8af16a2)/ 3|V [duy
M M
+4aa2/ <p2R|V<I)ﬁ|2dvf+/ gaQRCIDé (¢ —u) dvy
M M
= (8a—16a2+4aa2)/ <p2R|V<I>%|2dvf+/ @QRq)é (¢ —u)dvy
M M
+4/ or®= " (Vr, VO)dvs
M
= (8a — 1602 + 4ac’® —6)/ @%|V¢ﬁ|2dvf
M

+ (8 — 16a + dac — E)/ (qu)é_1<V(pR, V®)dvs
o Jm
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+ (8a — 1602 4 4aa’ — e)/ % |Vor|?dvy
M

+ ( — 4+ 160 — daa + E) / <pR<I>§_1<V<pR, Vy®@)dvs
a” Jm

+e/ ¢§3|vq>%|2duf+r/ <1>%|V<pR|2duf+/ RO (1 — u) dog
M M M
(3.3) f(8a—16a2+4aa2—e+7)/ (I)§|V<pR|2dvf,

M

where 0 < € < 8a — 1602 4 4aa?. Choosing 7 such that 7 > %(7404 +16a? —
4ac’ + €)%, and applying the Cauchy-Schwarz inequality, we have

( — 4+ 160 — daa + E) / @R¢§_1<VSDR,Vb(I)>de
a” Jym

+e/ <p§2|vq>%|2dvf+7/ &% |Vg|?dvy > 0.
M M
Hence (3.3) reduces to
0> (8a — 16a* + 4ac? — e)/ |V(¢R@ﬁ)|2dvf Jr/ QDQR(I)é (¢ — ) dvy
M M
(34) — (8a —16a* +4aa® — € + T)/ ¢é|V<pR|2dvf.

M

From (3.2), we have

1 1 11 =5 D 1
65) [ 1Vene®Pde 25 ([ henmray) -2 [ et
M M M

Substituting (3.5) into (3.4), and using the Holder inequality, we obtain

1 . 1=h
0> —(8a — 16a* + 4aa® — ¢€) (/ (chRq)é)mdvf)
c M

D
— 6(804 — 160 + 4aa’® — e)/ @%@édvf + /1 <,02Rq)é (¢ —u)dvy
M M

— (8 — 1602 + 4aa’ — e + T)/ <I>é|V<pR|2dvf
M

1 1
> 1280 — 1602 2N\ . } 2HEl
{0(804 16a” + 4daa” — €) HuHLE lpr® HLW(duf)

1 D
+/ ©Rda {1/) - 6(804 —16a* + 4aa’ — e)} dvy
M

(3.6) — (8a — 160”4 4aa® — ¢ + T)/ (I)é|V<pR|2dvf.
M
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Since ||<I>||LL < 00, we get

(dvy)

0< lim (8a—16a2+4aa276+7)/ &= [Vior|*dvy
M

R—o0
4
(3.7) §ngn (8ar — 160° + 4aa”® — e+ 7) R2/ (I)édvf:().

Combining (3.6) and (3.7), letting R — oo, using monotone and dominated
convergence theorems, we obtain

1 1
> = — 2 + 2 — 1 } o 1
0 {C(8a 16a 4aoe €) HUHLF ||<I> HLlfﬂ(de)

1 D
+/ da {1/)——(8047]_6042%»40,0[276)} dvy.
M

Since 1 > & (8ar— 160 +4aa? —¢) and ||u|| £ () < £(8a—1602+4aa’ —¢),
we conclude that & = 0. ([
Theorem 3.2. Let (M", g;e /dv,), n > 2, be a complete weighted Riemann-
ian manifold with inf f > —oo and let ® € Lip;o.(M) be a distributional solu-
tion of

Af®* > alVO? + 9? (¢ — bd?)
for some function b > 0 and constants a,b > 0. Assume that

(3.8)

(/M(ffe_f)ﬁdv)%z < C/M |V¢|2€_fdv+D/M ¢*edv, Vo € G5 (M)

for some constants C' > 0 and D > 0. Assume further that ¥ > 13(4%83—16)
and ||@2|\L§(dv) < a8 16 Then & = 0.

Proof. Letting u = b®2, a = % and € = % with R large enough in (3.4), we
have

0> {4a+8(n 2) _ }/ IV(pr®?) ffdv_|_/ PRO™ (v — bD?) e fdv
M

(3.9) —{0=2_ 144} / " |Vor|’e

Choosing ¢ = pr®? in (3.8), we obtain
(3.10)

. 1 . Y7 D
IV(pr®%)|?e 7 dv > </ (QQQR(I)"e*f)mdv) - L ®" e du.
M C\Ju CJu

Substituting (3.10) into (3.9), and using the Holder inequality yields

n—2

e e ( / (}omef )mdv) ’
M
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D[4QR+8%_RQ)R_”2] / 20" dv + /M HO" (¢ - b<1>2) e Tdv
_ {4a+8(n 2) +T}/ (I)n|VSDR|
> {MESGSR ey } Iohete

+ [ han {y - Dlismesgoanont} s,
M

(3.11) - {%&"72) -+ -‘1-7‘}}/ d"|Vor|?e fdv
M
Since inf f > —o0 and ||<I>2||L% (dw) < %(gg?), we get
0< lim {24822 +T}/ 3" |Vyr|?e
R—o0

< lim W*%JrT}%/ e fdv = 0.
M

Therefore, letting R — oo in (3.11), using monotone and dominated conver-
gence theorems, we have

0> {4a+8( bH(I)2H"} H(I)neffHL +/ o {’l/) B D(4a:lr288716)} e~ dv.
n—2 M

Since 1) > 717(4”:288716) and H<I)2||L% < 74’1282(;52), we conclude that ® =0. O

Remark 3.1. On a complete Riemannian manifold M™ with

VfeVf >
m-—n

Ric + V2f — -K

for some constant m > n, K > 0 and with the uniformly lower bound condition
inf / e ldv>0
TrEM Brg (z)
for some fixed radius rg > 0, the following Sobolev inequality (cf. [10])
n=2
C (/ ¢%e—fdv) < [ |VolPe Tdv +/ *eFdv, ¥ ¢ e C(M)
M M M
holds for some constant C' > 0. Thus, if additionally f > 0, then
C (/ (¢2e—f)#du) "< / |Vo|?e™ dv +/ *efdv, ¥ ¢ e CE(M).
M M M

When ¢ = 0®2* =1 with ¢ > 0, k > 1, and M supports an Euclidean type
weighted Sobolev inequality, we have the following corollary.
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Corollary 3.1. Let (M™,g; e’fdvg) be a complete weighted Riemannian man-

ifold with inf f > —oo and let ® € Lipjoc.(M) be a distributional solution of
A®2 > a| VO 4 0% — po?

for some constants k > 1 and a,0,b > 0. Assume that M™ supports an in-
equality of the form

(/M(&e_f)ﬁd”) - = C/M [Vo|2e~ dv, Vo e C3°(M)

for some constant C > 0. Assume further that ||®?
®=0.

4a+8n—16
||L%(dv)< wThe - Lhen

4. The classification of self-shrinkers as weighted manifolds

In order to apply the results in the above section to self-shrinkers, we need
the following Sobolev type inequality, which can be obtained by a method
similar to [14] (or [15]) in the case of submanifolds with parallel mean curvature.

||

In the following argument, we denote by f(z) = “5-.

Lemma 4.1. Let z : M" — R""' n > 3, be a complete immersed self-
shrinker. Then for any ¢ € C§°(M), we have the following inequality

(/M(tp%_f)%dz)) T - 2D2(n)[(n — 2) + 2n2(n — 1)2]k (/M Vole 7 do

n2(n — 2)>2

i 2,—f
(4.1) +4k Mcp e dv)

for any k > 1, where D(n) = 2"(1 +n)(n+1)/n(n7 1)ton
of the unit ball in R™.

1/n with o, = volume

Proof. From [8], we have the following Sobolev inequality

(4.2) ( / = T <o /| (191 + 2Lg) an

for all 0 < g € C°(M). Substituting g = 502(::21) into (4.2) yields

n—1
n " 2 -1 n D n—
( o) ™ < 2= Do) [ prnivaiar+ 22 [ mpstan
M M M

n—2 n

By the Holder inequality, we obtain
2(n — 1) 1
Il 22, < D) {28 Dyl + S}
n n n

Thus,

—1)2(1+s)

43) ol < 0% { S el + (14 D) 3]
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£
2

for all s > 0. Replacing ¢ by we™z and using (1.2), we have

( /M«oe—%)%dv)%z < {02 [ vieetypan

1 1 2 —f L2
(4.4) +w(1+g) /M<p e |z dv}.

Consider the first integration at the right hand side of (4.4). Integrating by
parts and noting that V|z|? = 227, where T denotes the projection onto the
tangent bundle T'M, we obtain

(4.5) V(pe*
M

1 1
= / |Vel2e ldv + = / (Ve?, Ve Ndv + = / o?el Ve 2dv
M 2 Jm 4 Jm

1 1
= / |Vel?e ™ dv — 5/ P*NeTdv+ — | Qe |Pe dv.
M

)|2dv

M 16 /s
Since Ax = —Hm on any hypersurface and H = <12—ﬁ> on a self-shrinker, we
have
1 1
Ne ™/ = —Z(2<Vx,v,r) +2(Az,z))e f + E|V|x|2|26_f
1 1
= —Z(Qn — 2(Hii, z))e ! + Z|$T|2€_f
1 1
= —Z(Qn —lztP)e ™ + Z|x—r|2e_f

1
(4.6) = —geff + Z|x|267f.

Substituting (4.6) into (4.5), we have

1
/ |V(<pe_%)|2dvz/ |V<p|2€_fdv——/ <p2|xL|2e_f+E/ e I dv
M M 8 Jm 4
4.7)

1

(4. —— | Pz Pedv.
Substituting (4.7) into (4.4) and choosing s > 0 such that

1 4n—12%(1+s) 1 1

8~ (n —2)2 74n2( Jrs)’
that is, s = %, we conclude that

2w O\ 2D2(n)[(n - 2)% + 2n%(n — 1)2
(/ (@e‘é)ﬁdu) < ( )[( 5 ) 5 ( ) ] (/ |V<p|2e_fdv
M n*(n — 2) M

+E/ gaQe*fdv),
4 Jm
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where we discard the negative term at the right hand side. Therefore,

(/M(<p26f)ﬁdv)n72 . 2D2(n) [(n — 2)% + 2n%(n — 1))k (/M Vol2e dv

n2(n — 2)2

n 2—fd)
+4k Mgpe v

for any k£ > 1. O

Remark 4.1. In the inequality (4.1), we introduce the constant k to suit our
purposes. The flexibility of k enables us to apply Theorem 3.2 directly to prove
global rigidity theorem for self-shrinkers.

In the following argument, we will use the above lemma to prove our main
theorems. Considering the inequality (2.1), an immediate application of The-
orem 3.2 and Lemma 4.1 yields the following result.

Theorem 4.1. Let M™ — R™! n > 2, be a complete immersed self-shrinker.
Assume that

Un 2 n
(48) (/M |A|"d“> ) \/(n D NI RCT RIS
Then M™ 1is a hyperplane.
Proof. Tt follows from (2.1) that
LIAP > 2|VIA||* + AP (1 - 2|AP%).
By (4.1), we take C' = 2D (m)[(n=2 42 (n )%k Py _ DZ(”)[(”*2)2+2n2(n*1)Z],

n2(n—2)2 ) 2n(n—2)2
a=>b=2andvy =1in Theorem 3.2. Let k = 2"n_2, theny =1= D(4an+278g_16),

and (4.8) is equivalent to ||A||2n(M) < %(gg?). According to Theorem 3.2,

|A| = 0, that is, M™ is totally geodesic. Therefore, M™ is a hyperplane. (I

Remark 4.2. Substituting s = % into (4.3), we have

- 1
R el 2y < IVells + S1HLS,

n—2

2D2(ﬂ)[(2;(22i‘2§g2("_1)2} . We see that the constant at the right hand

side of (4.8) is equal to 4/ %, which is larger than 4/ 3%{. Hence the constant in

Theorem 4.1 seems better and more explicit than that of [5] in the case where
the self-shrinker M™ is a hypersurface in R*+1,

where K =

Theorem 4.2. Let M™ — R"™ n > 2, be a complete immersed self-shrinker.
Assume that H? < % and

n 2(n —1)(n —2)?
([ 1wra) < (n~1)(n—2)
M D?(n)[(n —2)% 4 2n%(n — 1)2]k
for k> % Then M™ 1is a hyperplane.
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Proof. Applying Theorem 3.2 and Lemma 4.1 to the inequality (2.3), we con-
clude that |¥| = 0, i.e., |A|?> = HTZ, that is, M™ is a totally umbilical hyper-
surface in R™*!. Hence, M™ is a hyperplane or a hypersphere. If M™ is a
hypersphere, it must be $"(v/2n) C R™™! and |H|? = %, which contradicts to
the+zllssumption that H? < % < 5. Therefore, M™ is a hyperplane in
R™T, ([l

¢ (k—2)n+2 (k—2)n+2
2k 2k

%. Cao and Li [1] proved that if a complete noncompact self-shrinker M™ in
R™*1 has polynomial volume growth and satisfies H* > %, then H? =

Remark 4.3. It is obvious that the constan < % and klim
— 00

n
5
Corollary 4.1. Let M™ — R"*! n > 2, be a complete immersed self-shrinker.

Assume that sup H? < 5. Then there exist an explicit positive constant C

depending on sup H? such that if
([ 1wra) <
M

Acknowledgements. The author would like to thank the referee for the
helpful comments and suggestions.

3=

then M™ is a hyperplane.
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