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SOME RIGIDITY THEOREMS FOR SELF-SHRINKERS OF

THE MEAN CURVATURE FLOW

Hezi Lin

Abstract. In this paper, we first prove some Liouville type theorems
for elliptic inequalities on weighted manifolds which support a weighted
Sobolev-type inequality. Secondly, applying the Liouville type theorems
to self-shrinkers, we obtain some global rigidity theorems.

1. Introduction

A one-parameter family Mt (t ≤ 0) of hypersurfaces in R
n+1 flows by mean

curvature if

(1.1) (∂tx)
⊥ = −H~n,

where ⊥ denotes the projection onto the normal bundle NM , ~n is the outward
unit normal and the mean curvature H is given by H = div~n.

Let Mn be an n-dimensional Riemannian manifold, and x : Mn → R
n+1

be an isometric immersion. A self-shrinker Mn as a hypersurface satisfies the
following equation for the mean curvature and the normal

(1.2) H =
〈x, ~n〉
2

.

Such hypersurface corresponds to expanding homothetic solution of mean cur-
vature flow. The simplest examples are R

n, Sn(
√
2n), and S

k(
√
2k) × R

n−k,
0 < k < n. Self-shrinkers play an important role in the study of mean curva-
ture flow, not only are they the simplest examples (those where later time slices
are rescalings of earlier, that is, if a hypersurface Σ satisfies (1.2), then

√
−tΣ

flows by mean curvature flow (1.1)), but they also describe all possible blow
ups at a given singularity of a mean curvature flow. Thus, the classification of
type-1 blow ups of a mean curvature flow is equivalent to the classification of
self-shrinkers.

For the rigidity property of self-shrinker, there are some results in recent
years. In the graphical case, K. Ecker and G. Huisken [7] showed that an
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entire graphical self-shrinker with polynomial volume growth is a hyperplane.
L. Wang [13] removed the condition of polynomial volume growth in Ecker-
Huisken’s theorem. This was later generalized to higher codimension by Q. Ding
and Z. Z. Wang [6] under the condition of flat normal bundle.

In the general submanifold case, Colding and Minicozzi [4] gave the clas-

sification of self-shrinkers with H ≥ 0, they proved that S
k(
√
2k) × R

n−k,
0 ≤ k ≤ n, are the only smooth complete embedded self-shrinkers without
boundary, with polynomial volume growth, and H ≥ 0 in R

n+1. Based on
an identity of [4], N. Q. Le and N. Sesum [9] proved that if a hypersurface
Mn ⊂ R

n+1 is a smooth complete embedded self-shrinker without boundary
and with polynomial volume growth, and satisfies |A|2 < 1

2 , where |A| de-
notes the norm of the second fundamental of Mn, then Mn is a hyperplane.
H. D. Cao and H. Z. Li [1] improved their results to higher codimensional self-

shrinkers with |A|2 ≤ 1
2 and proved that they must be Sk(

√
2k)×R

n−k ⊂ R
n+1

with 0 ≤ k ≤ n. (Note that, our definition of self-shrinker is slightly different
from their’s. In [1] and [9], the assumption is |A|2 ≤ 1, which in our notation
becomes |A|2 ≤ 1

2 .) For the second gap of |A|2, Q. Ding and Y. L. Xin [5]

proved that if the self-shrinkerMn ⊂ R
n+1 has polynomial volume growth and

|A|2 ≤ 1
2 +0.011, then |A|2 = 1

2 . Q. M. Cheng and G. X. Wei [3] improved their

results to |A|2 ≤ 1
2 + 3

14 and proved that M is isometric to S
k(
√
2k) × R

n−k,
0 ≤ k ≤ n.

Recently, M. Rimoldi [11] proved Colding and Minicozzi’s theorem under

the conditions that H ≥ 0 and |A| ∈ L2(e−
|x|

2

4 dvol), without the condition
“polynomial volume growth”. For the global rigidity property of self-shrinkers,

Q. Ding and Y. L. Xin [5] proved that if ‖A‖Ln(M) <
»

4
3nκ , where κ is a con-

stant in Sobolev inequality, then the self-shrinkerM must be a linear subspace.
In this paper, we are interested in the rigidity problem of self-shrinkers in

Euclidean space. To achieve this, we first get some more general Lp vanishing
results for elliptic inequalities which come from various geometric situation,
under the existence of a weighted Sobolev-type inequality. Our results are
proved in a more general setting of weighted manifolds and, therefore, applies
to different geometric situations; see Theorem 4.1 and Theorem 4.2.

2. Preliminaries

A weighted manifold, also known in the literature as a smooth metric mea-
sure space, is a triple (M, g; e−fdvg), where (M, g) is an n-dimensional Rie-
mannian manifold with metric g, dvg is the canonical Riemannian volume el-
ement and f is a smooth function on M . Associated to a weighted manifold
(M, g; e−fdvg), we define a weighted Laplacian by

△fu = △u− 〈∇f,∇u〉g = efdiv(e−f∇u)
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for u ∈ C2(M). Then △f is self-adjoint in a weighted L2 space, that is,
∫

M

u△fve
−fdv = −

∫

M

〈∇u,∇v〉e−fdv

for any u ∈ C1
c (M) and v ∈ C2(M).

Self-shrinkers in R
n+1 can be characterized as minimal hypersurfaces for the

conformally changed metric gij = e−
|x|

2

2n δij , thus we are naturally led to think

of a self-shrinker x : Mn → R
n+1 as a weighted manifold (Mn, e−

|x|
2

4 dv), whose
geometry is governed by analytic properties of the following linear operator L
which was first introduced by Colding and Minicozzi ([4])

L = △ |x|
2

4

= △− 1

2
〈x,∇(·)〉 = e

|x|
2

4 div(e−
|x|

2

4 ∇(·)),

where div is the divergence on Mn. The operator L plays an important role in
the study of self-shrinkers.

For our later use, we collect the following two Simons’ type identities (cf.
[4])

Lemma 2.1. Let Mn → R
n+1 be a complete immersed self-shrinker. Then we

have

L|A|2 = 2|∇A|2 + 2|A|2(1
2
− |A|2),(2.1)

L|H |2 = 2|∇H |2 + |H |2 − 2|H |2|A|2.(2.2)

For our purposes, it will be more appropriate to deal with the traceless part
of A, which is given by Ψ = A − HI, with I the identity operator on TM .
Then, tr(Ψ) = 0 and

|Ψ|2 = tr(Ψ2) = |A|2 − H2

n
≥ 0

with equality at p ∈ M if and only if p is an umbilical point. Thus, Ψ ≡ 0 is
equivalent to the fact that the immersion is totally umbilical. For that reason,
Ψ is also called the total umbilicity tensor of M . Combining (2.1) and (2.2),
we get

L|Ψ|2 = 2

Å

|∇A|2 − |∇H |2
n

ã

+

Å

|A|2 − H2

n

ã

− 2|A|4 + 2
|H |2
n

|A|2

= 2

∣

∣

∣

∣

∇(A− H

n
I)

∣

∣

∣

∣

2

+

Å

|A|2 − H2

n

ãï

1− 2H2

n
− 2

Å

|A|2 − H2

n

ãò

≥ 2

∣

∣

∣

∣

∇|A− H

n
I|
∣

∣

∣

∣

2

+

Å

|A|2 − H2

n

ã ï

1− 2H2

n
− 2

Å

|A|2 − H2

n

ãò

,

where we have used the Kato inequality in the last inequality. Therefore,

(2.3) L|Ψ|2 ≥ 2|∇|Ψ||2 + |Ψ|2
Å

1− 2H2

n
− 2|Ψ|2

ã

.
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3. Liouville type theorems on weighted manifolds

In this section, we study the Lp vanishing property of a special type PDEs
on weighted manifolds which support a weighted Sobolev type inequality. Some
results of the next section rely on the following weighted version of Liouville-
type theorems which might be interesting by itself.

Theorem 3.1. Let (Mn, g; dvf ) be a complete weighted Riemannian manifold

with dvf = e−fdvg and let Φ ∈ Liploc(M) be a distributional solution of

(3.1) △fΦ
2 ≥ a|∇Φ|2 +Φ2 (ψ − u)

for some functions ψ, u ≥ 0 and constant a ≥ 0. Suppose for 0 ≤ β < 1, the
Sobolev-type inequality of the form

(3.2)

Å∫

M

φ
2

1−β dvf

ã1−β

≤ C

∫

M

|∇φ|2dvf +D

∫

M

φ2dvf , ∀ φ ∈ C∞
0 (M).

holds for C > 0 and D ∈ R. Assume that ψ ≥ D
C
(8α − 16α2 + 4aα2 − ǫ),

‖Φ‖
L

1

α (dvf )
< ∞ and ‖u‖

L
1

β (dvf )
< 1

C
(8α − 16α2 + 4aα2 − ǫ) with α > 0 and

0 < ǫ ≤ 8α− 16α2 + 4aα2. Then Φ ≡ 0.

Proof. For R > 0, let us choose a cut-off function ϕR ∈ C∞
c (M) satisfying the

properties that

ϕR(x) =

®

1 on BR(q);

0 on M \B2R(q)

and

|∇ϕR| ≤
2

R
on B2R(q) \BR(q),

where BR(q) is the geodesic ball in M with radius R centered at q ∈ M .

Multiplying ϕ2
RΦ

1

α
−2e−f on both sides of inequality (3.1) and integrating by

parts, we get

0 ≥ 4

∫

M

ϕRΦ
1

α
−1〈∇ϕR,∇Φ〉dvf + (8α− 16α2)

∫

M

ϕ2
R|∇Φ

1

2α |2dvf

+ 4aα2

∫

M

ϕ2
R|∇Φ

1

2α |2dvf +

∫

M

ϕ2
RΦ

1

α (ψ − u) dvf

= (8α− 16α2 + 4aα2)

∫

M

ϕ2
R|∇Φ

1

2α |2dvf +

∫

M

ϕ2
RΦ

1

α (ψ − u)dvf

+ 4

∫

M

ϕRΦ
1

α
−1〈∇ϕR,∇Φ〉dvf

= (8α− 16α2 + 4aα2 − ǫ)

∫

M

ϕ2
R|∇Φ

1

2α |2dvf

+
(

8− 16α+ 4aα− ǫ

α

)

∫

M

ϕRΦ
1

α
−1〈∇ϕR,∇Φ〉dvf
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+ (8α− 16α2 + 4aα2 − ǫ)

∫

M

Φ
1

α |∇ϕR|2dvf

+
(

− 4 + 16α− 4aα+
ǫ

α

)

∫

M

ϕRΦ
1

α
−1〈∇ϕR,∇bΦ〉dvf

+ ǫ

∫

M

ϕ2
R|∇Φ

1

2α |2dvf + τ

∫

M

Φ
1

α |∇ϕR|2dvf +

∫

M

ϕ2
RΦ

1

α (ψ − u) dvf

− (8α− 16α2 + 4aα2 − ǫ + τ)

∫

M

Φ
1

α |∇ϕR|2dvf ,(3.3)

where 0 < ǫ ≤ 8α− 16α2 + 4aα2. Choosing τ such that τ ≥ 1
ǫ
(−4α+ 16α2 −

4aα2 + ǫ)2, and applying the Cauchy-Schwarz inequality, we have

(

− 4 + 16α− 4aα+
ǫ

α

)

∫

M

ϕRΦ
1

α
−1〈∇ϕR,∇bΦ〉dvf

+ ǫ

∫

M

ϕ2
R|∇Φ

1

2α |2dvf + τ

∫

M

Φ
1

α |∇ϕR|2dvf ≥ 0.

Hence (3.3) reduces to

0 ≥ (8α− 16α2 + 4aα2 − ǫ)

∫

M

|∇(ϕRΦ
1

2α )|2dvf +

∫

M

ϕ2
RΦ

1

α (ψ − u) dvf

− (8α− 16α2 + 4aα2 − ǫ+ τ)

∫

M

Φ
1

α |∇ϕR|2dvf .(3.4)

From (3.2), we have

∫

M

|∇(ϕRΦ
1

2α )|2dvf ≥ 1

C

Å∫

M

(ϕ2
RΦ

1

α )
1

1−β dvf

ã1−β

− D

C

∫

M

ϕ2
RΦ

1

α dvf .(3.5)

Substituting (3.5) into (3.4), and using the Hölder inequality, we obtain

0 ≥ 1

C
(8α− 16α2 + 4aα2 − ǫ)

Å∫

M

(ϕ2
RΦ

1

α )
1

1−β dvf

ã1−β

− D

C
(8α− 16α2 + 4aα2 − ǫ)

∫

M

ϕ2
RΦ

1

α dvf +

∫

M

ϕ2
RΦ

1

α (ψ − u)dvf

− (8α− 16α2 + 4aα2 − ǫ+ τ)

∫

M

Φ
1

α |∇ϕR|2dvf

≥
ß

1

C
(8α− 16α2 + 4aα2 − ǫ)− ‖u‖

L
1

β

™

‖ϕ2
RΦ

1

α ‖
L

1

1−β (dvf )

+

∫

M

ϕ2
RΦ

1

α

ß

ψ − D

C
(8α− 16α2 + 4aα2 − ǫ)

™

dvf

− (8α− 16α2 + 4aα2 − ǫ+ τ)

∫

M

Φ
1

α |∇ϕR|2dvf .(3.6)
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Since ‖Φ‖
L

1

α (dvf )
<∞, we get

0 ≤ lim
R→∞

(

8α− 16α2 + 4aα2 − ǫ+ τ
)

∫

M

Φ
1

α |∇ϕR|2dvf

≤ lim
R→∞

(

8α− 16α2 + 4aα2 − ǫ+ τ
) 4

R2

∫

M

Φ
1

α dvf = 0.(3.7)

Combining (3.6) and (3.7), letting R → ∞, using monotone and dominated
convergence theorems, we obtain

0 ≥
ß

1

C
(8α− 16α2 + 4aα2 − ǫ)− ‖u‖

L
1

β

™

‖Φ 1

α ‖
L

1

1−β (dvf )

+

∫

M

Φ
1

α

ß

ψ − D

C
(8α− 16α2 + 4aα2 − ǫ)

™

dvf .

Since ψ ≥ D
C
(8α−16α2+4aα2− ǫ) and ‖u‖

L
1

β (dvf )
< 1

C
(8α−16α2+4aα2− ǫ),

we conclude that Φ = 0. �

Theorem 3.2. Let (Mn, g; e−fdvg), n ≥ 2, be a complete weighted Riemann-

ian manifold with inf f > −∞ and let Φ ∈ Liploc(M) be a distributional solu-

tion of

△fΦ
2 ≥ a|∇Φ|2 +Φ2

(

ψ − bΦ2
)

for some function ψ ≥ 0 and constants a, b ≥ 0. Assume that

(3.8)
Å∫

M

(φ2e−f )
n

n−2 dv

ã
n−2

n

≤ C

∫

M

|∇φ|2e−fdv +D

∫

M

φ2e−fdv, ∀φ ∈ C∞
0 (M)

for some constants C > 0 and D ≥ 0. Assume further that ψ ≥ D(4a+8n−16)
n2C

and ‖Φ2‖
L

n

2 (dv)
< 4a+8n−16

n2bC
. Then Φ ≡ 0.

Proof. Letting u = bΦ2, α = 1
n
and ǫ = 1

R
with R large enough in (3.4), we

have

0 ≥
¶

4a+8(n−2)
n2 − 1

R

©

∫

M

|∇(ϕRΦ
n

2 )|2e−fdv +

∫

M

ϕ2
RΦ

n
(

ψ − bΦ2
)

e−fdv

−
¶

4a+8(n−2)
n2 − 1

R
+ τ
©

∫

M

Φn|∇ϕR|2e−fdv.(3.9)

Choosing φ = ϕRΦ
n

2 in (3.8), we obtain

∫

M

|∇(ϕRΦ
n

2 )|2e−fdv ≥ 1

C

Å∫

M

(ϕ2
RΦ

ne−f )
n

n−2 dv

ã
n−2

n

− D

C

∫

M

ϕ2
RΦ

ne−fdv.

(3.10)

Substituting (3.10) into (3.9), and using the Hölder inequality yields

0 ≥ 4aR+8(n−2)R−n2

n2CR

Å∫

M

(ϕ2
RΦ

ne−f )
n

n−2 dv

ã

n−2

n
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− D[4aR+8(n−2)R−n2]
n2CR

∫

M

ϕ2
RΦ

ne−fdv +

∫

M

ϕ2
RΦ

n
(

ψ − bΦ2
)

e−fdv

−
¶

4a+8(n−2)
n2 − 1

R
+ τ
©

∫

M

Φn|∇ϕR|2e−fdv

≥
{

4aR+8(n−2)R−n2

n2CR
− b‖Φ2‖n

2

}

‖ϕ2
RΦ

ne−f‖ n

n−2

+

∫

M

ϕ2
RΦ

n
{

ψ − D[4aR+8(n−2)R−n2]
n2CR

}

e−fdv

−
¶

4a+8(n−2)
n2 − 1

R
+ τ
ó

}
∫

M

Φn|∇ϕR|2e−fdv.(3.11)

Since inf f > −∞ and ‖Φ2‖
L

n

2 (dv)
< 4a+8(n−2)

n2bC
, we get

0 ≤ lim
R→∞

¶

4a+8(n−2)
n2 − 1

R
+ τ
©

∫

M

Φn|∇ϕR|2e−fdv

≤ lim
R→∞

¶

4a+8(n−2)
n2 − 1

R
+ τ
©

4
R2

∫

M

Φne−fdv = 0.

Therefore, letting R → ∞ in (3.11), using monotone and dominated conver-
gence theorems, we have

0 ≥
{

4a+8(n−2)
n2C

− b‖Φ2‖n
2

}

‖Φne−f‖ n
n−2

+

∫

M

Φn
¶

ψ − D(4a+8n−16)
n2C

©

e−fdv.

Since ψ ≥ D(4a+8n−16)
n2C

and ‖Φ2‖
L

n

2
< 4a+8(n−2)

n2bC
, we conclude that Φ = 0. �

Remark 3.1. On a complete Riemannian manifold Mn with

Ric +∇2f − ∇f ⊗∇f
m− n

≥ −K

for some constantm > n, K ≥ 0 and with the uniformly lower bound condition

inf
x∈M

∫

Br0
(x)

e−fdv > 0

for some fixed radius r0 > 0, the following Sobolev inequality (cf. [10])

C

Å∫

M

φ
2n

n−2 e−fdv

ã
n−2

n

≤
∫

M

|∇φ|2e−fdv +

∫

M

φ2e−fdv, ∀ φ ∈ C∞
0 (M)

holds for some constant C > 0. Thus, if additionally f ≥ 0, then

C

Å∫

M

(φ2e−f )
n

n−2 dv

ã
n−2

n

≤
∫

M

|∇φ|2e−fdv +

∫

M

φ2e−fdv, ∀ φ ∈ C∞
0 (M).

When ψ = σΦ2(k−1) with σ ≥ 0, k ≥ 1, and M supports an Euclidean type
weighted Sobolev inequality, we have the following corollary.
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Corollary 3.1. Let (Mn, g; e−fdvg) be a complete weighted Riemannian man-

ifold with inf f > −∞ and let Φ ∈ Liploc(M) be a distributional solution of

△fΦ
2 ≥ a|∇Φ|2 + σΦ2k − bΦ4

for some constants k ≥ 1 and a, σ, b ≥ 0. Assume that Mn supports an in-

equality of the form

Å∫

M

(φ2e−f )
n

n−2 dv

ã

n−2

n

≤ C

∫

M

|∇φ|2e−fdv, ∀φ ∈ C∞
0 (M)

for some constant C > 0. Assume further that ‖Φ2‖
L

n

2 (dv)
< 4a+8n−16

n2bC
. Then

Φ ≡ 0.

4. The classification of self-shrinkers as weighted manifolds

In order to apply the results in the above section to self-shrinkers, we need
the following Sobolev type inequality, which can be obtained by a method
similar to [14] (or [15]) in the case of submanifolds with parallel mean curvature.

In the following argument, we denote by f(x) = |x|2
4 .

Lemma 4.1. Let x : Mn → R
n+1, n ≥ 3, be a complete immersed self-

shrinker. Then for any ϕ ∈ C∞
0 (M), we have the following inequality

Å∫

M

(ϕ2e−f)
n

n−2 dv

ã

n−2

n

≤ 2D2(n)[(n− 2)2 + 2n2(n− 1)2]k

n2(n− 2)2

(

∫

M

|∇ϕ|2e−fdv

+
n

4k

∫

M

ϕ2e−fdv
)

(4.1)

for any k ≥ 1, where D(n) = 2n(1+n)(n+1)/n(n−1)−1σ
−1/n
n with σn= volume

of the unit ball in R
n.

Proof. From [8], we have the following Sobolev inequality

(4.2)

Å∫

M

g
n

n−1 dv

ã
n−1

n

≤ D(n)

∫

M

Å

|∇g|+ |H |
n
g

ã

dv

for all 0 ≤ g ∈ C∞
c (M). Substituting g = ϕ

2(n−1)

n−2 into (4.2) yields

Å∫

M

ϕ
2n

n−2 dv

ã

n−1

n

≤ 2(n− 1)

n− 2
D(n)

∫

M

ϕ
n

n−2 |∇ϕ|dv + D(n)

n

∫

M

|H |ϕ
2(n−1)

n−2 dv.

By the Hölder inequality, we obtain

‖ϕ‖ 2n

n−2

≤ D(n)

ß

2(n− 1)

n− 2
‖∇ϕ‖2 +

1

n
‖Hϕ‖2

™

.

Thus,

(4.3) ‖ϕ‖22n
n−2

≤ D2(n)

ß

4(n− 1)2(1 + s)

(n− 2)2
‖∇ϕ‖22 +

(

1 +
1

s

) 1

n2
‖Hϕ‖22

™
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for all s > 0. Replacing ϕ by ϕe−
f

2 and using (1.2), we have

Å∫

M

(ϕe−
f

2 )
2n

n−2 dv

ã
n−2

n

≤ D2(n)
{4(n− 1)2(1 + s)

(n− 2)2

∫

M

|∇(ϕe−
f

2 )|2dv

+
1

4n2

(

1 +
1

s

)

∫

M

ϕ2e−f |x⊥|2dv
}

.(4.4)

Consider the first integration at the right hand side of (4.4). Integrating by
parts and noting that ∇|x|2 = 2x⊤, where ⊤ denotes the projection onto the
tangent bundle TM , we obtain

∫

M

|∇(ϕe−
f

2 )|2dv(4.5)

=

∫

M

|∇ϕ|2e−fdv +
1

2

∫

M

〈∇ϕ2,∇e−f 〉dv + 1

4

∫

M

ϕ2ef |∇e−f |2dv

=

∫

M

|∇ϕ|2e−fdv − 1

2

∫

M

ϕ2△e−fdv +
1

16

∫

M

ϕ2|x⊤|2e−fdv.

Since △x = −H~n on any hypersurface and H = 〈x,~n〉
2 on a self-shrinker, we

have

△e−f = −1

4

(

2〈∇x,∇x〉 + 2〈△x, x〉
)

e−f +
1

16
|∇|x|2|2e−f

= −1

4

(

2n− 2〈H~n, x〉
)

e−f +
1

4
|x⊤|2e−f

= −1

4

(

2n− |x⊥|2
)

e−f +
1

4
|x⊤|2e−f

= −n
2
e−f +

1

4
|x|2e−f .(4.6)

Substituting (4.6) into (4.5), we have
∫

M

|∇(ϕe−
f

2 )|2dv =

∫

M

|∇ϕ|2e−fdv − 1

8

∫

M

ϕ2|x⊥|2e−f +
n

4

∫

M

ϕ2e−fdv

− 1

16

∫

M

ϕ2|x⊤|2e−fdv.(4.7)

Substituting (4.7) into (4.4) and choosing s > 0 such that

1

8
× 4(n− 1)2(1 + s)

(n− 2)2
=

1

4n2

(

1 +
1

s

)

,

that is, s = (n−2)2

2n2(n−1)2 , we conclude that

Å∫

M

(ϕe−
f

2 )
2n

n−2 dv

ã
n−2

n

≤ 2D2(n)
[

(n− 2)2 + 2n2(n− 1)2
]

n2(n− 2)2

(

∫

M

|∇ϕ|2e−fdv

+
n

4

∫

M

ϕ2e−fdv
)

,
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where we discard the negative term at the right hand side. Therefore,
Å∫

M

(ϕ2e−f )
n

n−2 dv

ã
n−2

n

≤ 2D2(n)
[

(n− 2)2 + 2n2(n− 1)2
]

k

n2(n− 2)2

(

∫

M

|∇ϕ|2e−fdv

+
n

4k

∫

M

ϕ2e−fdv
)

for any k ≥ 1. �

Remark 4.1. In the inequality (4.1), we introduce the constant k to suit our
purposes. The flexibility of k enables us to apply Theorem 3.2 directly to prove
global rigidity theorem for self-shrinkers.

In the following argument, we will use the above lemma to prove our main
theorems. Considering the inequality (2.1), an immediate application of The-
orem 3.2 and Lemma 4.1 yields the following result.

Theorem 4.1. Let Mn → R
n+1, n > 2, be a complete immersed self-shrinker.

Assume that

(4.8)

Å∫

M

|A|ndv
ã1/n

<
n− 2

D(n)

…

n

(n− 2)2 + 2n2(n− 1)2
.

Then Mn is a hyperplane.

Proof. It follows from (2.1) that

L|A|2 ≥ 2|∇|A||2 + |A|2(1− 2|A|2).

By (4.1), we take C = 2D2(n)[(n−2)2+2n2(n−1)2]k
n2(n−2)2 , D = D2(n)[(n−2)2+2n2(n−1)2]

2n(n−2)2 ,

a = b = 2 and ψ = 1 in Theorem 3.2. Let k = 2n−2
n

, then ψ = 1 = D(4a+8n−16)
n2C

,

and (4.8) is equivalent to ‖A‖2
Ln(M) <

4a+8(n−2)
n2bC

. According to Theorem 3.2,

|A| = 0, that is, Mn is totally geodesic. Therefore, Mn is a hyperplane. �

Remark 4.2. Substituting s = (n−2)2

2n2(n−1)2 into (4.3), we have

κ−1‖ϕ‖22n
n−2

≤ ‖∇ϕ‖22 +
1

2
‖Hϕ‖22,

where κ = 2D2(n)[(n−2)2+2n2(n−1)2]
n2(n−2)2 . We see that the constant at the right hand

side of (4.8) is equal to
»

2
nκ

, which is larger than
»

4
3nκ . Hence the constant in

Theorem 4.1 seems better and more explicit than that of [5] in the case where
the self-shrinker Mn is a hypersurface in R

n+1.

Theorem 4.2. Let Mn → R
n+1, n > 2, be a complete immersed self-shrinker.

Assume that H2 ≤ (k−2)n+2
2k and

Å∫

M

|Ψ|ndv
ã

2

n

<
2(n− 1)(n− 2)2

D2(n)
[

(n− 2)2 + 2n2(n− 1)2
]

k

for k ≥ 2n−2
n

. Then Mn is a hyperplane.
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Proof. Applying Theorem 3.2 and Lemma 4.1 to the inequality (2.3), we con-

clude that |Ψ| = 0, i.e., |A|2 = H2

n
, that is, Mn is a totally umbilical hyper-

surface in R
n+1. Hence, Mn is a hyperplane or a hypersphere. If Mn is a

hypersphere, it must be S
n(
√
2n) ⊂ R

n+1 and |H |2 = n
2 , which contradicts to

the assumption that H2 ≤ (k−2)n+2
2k < n

2 . Therefore, Mn is a hyperplane in

R
n+1. �

Remark 4.3. It is obvious that the constant (k−2)n+2
2k < n

2 and lim
k→∞

(k−2)n+2
2k =

n
2 . Cao and Li [1] proved that if a complete noncompact self-shrinker Mn in

R
n+1 has polynomial volume growth and satisfies H2 ≥ n

2 , then H
2 ≡ n

2 .

Corollary 4.1. LetMn → R
n+1, n > 2, be a complete immersed self-shrinker.

Assume that supH2 < n
2 . Then there exist an explicit positive constant C

depending on supH2 such that if
Å∫

M

|Ψ|ndv
ã

1

n

< C,

then Mn is a hyperplane.
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