DOI QR코드

DOI QR Code

RGB 채널 표준 편차의 최적화를 통한 광원 색도 추정

Illuminant Chromaticity Estimation via Optimization of RGB Channel Standard Deviation

  • 투고 : 2016.02.23
  • 심사 : 2016.06.02
  • 발행 : 2016.06.25

초록

색 항상성 알고리즘의 주된 목적은 광원의 색도를 추정하는 것으로, 최근 통계 기반과 학습 기반 및 통계와 학습의 조합 기반의 색 항상성 알고리즘들이 다양하게 연구되고 있다. 통계 기반 알고리즘은 특정 가정을 만족하는 영상들에 대해서만 수행이 가능하고, 학습 기반 알고리즘은 정확한 전처리와 학습 데이터가 요구되는 복잡한 방법이다. 그리고 통계와 학습의 조합 기반 알고리즘은 사전에 결정되거나 동적으로 변하는 가중치에 따라 결과가 의존적이기 때문에, 이를 정의하기 어려울 뿐만 아니라 에러에도 민감하다. 따라서 본 논문은 복잡한 전처리를 요구하지 않으며, 다양한 환경 조건 하에서 광원 추정이 가능한 새로운 최적화 방법을 제안한다. 영상 내에서 광원의 영향이 강하게 미치는 부분은 한 채널의 표준 편차가 나머지 두 채널에 비해 큰 차이를 가진다. 이 가정을 기반으로, 광원 정도(DIT, degree of illumiinant tinge)라고 불리는 비용 함수는 광원이 보정된 영상의 질을 결정하기 위해 제안된다. 표준 광원(d65) 하의 영상이 다른 광원 하의 영상에 비해 더 작은 DIT 값을 가진다. 본 논문에서 군집단 최적화(PSO, particle swarm optimization) 기반의 집단지성(swarm intelligence)은 DIT를 최소화하기 위해, 주어진 영상의 최적 광원을 찾는데 사용된다. 제안한 방법은 실세계 데이터셋을 통해 평가하였고, 실험 결과는 제안된 방법의 효율성을 입증하였다.

The primary aim of the color constancy algorithm is to estimate illuminant chromaticity. There are various statistical-based, learning-based and combinational-based color constancy algorithms already exist. However, the statistical-based algorithms can only perform well on images that satisfy certain assumptions, learning-based methods are complex methods that require proper preprocessing and training data, and combinational-based methods depend on either pre-determined or dynamically varying weights, which are difficult to determine and prone to error. Therefore, this paper presents a new optimization based illuminant estimation method which is free from complex preprocessing and can estimate the illuminant under different environmental conditions. A strong color cast always has an odd standard deviation value in one of the RGB channels. Based on this observation, a cost function called the degree of illuminant tinge(DIT) is proposed to determine the quality of illuminant color-calibrated images. This DIT is formulated in such a way that the image scene under standard illuminant (d65) has lower DIT value compared to the same scene under different illuminant. Here, a swarm intelligence based particle swarm optimizer(PSO) is used to find the optimum illuminant of the given image that minimizes the degree of illuminant tinge. The proposed method is evaluated using real-world datasets and the experimental results validate the effectiveness of the proposed method.

키워드

참고문헌

  1. D. H. Foster, "Color constancy," Vision research, vol. 51, no. 7, pp. 674-700, 2011. https://doi.org/10.1016/j.visres.2010.09.006
  2. A. Gijsenij, T. Gevers, and J. Van De Weijer, "Computational color constancy: Survey and experiments," Image Processing, IEEE Transactions on, vol. 20, no. 9, pp. 2475-2489, 2011. https://doi.org/10.1109/TIP.2011.2118224
  3. G. D. Finlayson and E. Trezzi, "Shades of grey and colour constancy," in Color and Imaging Conference, vol. 2004, no. 1. Society for Imaging Science and Technology, 2004, pp. 37-41.
  4. J. Van De Weijer, T. Gevers, and A. Gijsenij, "Edge-based color constancy," Image Processing, IEEE Transactions on, vol. 16, no. 9, pp. 2207-2214, 2007. https://doi.org/10.1109/TIP.2007.901808
  5. M. Ebner, Color constancy. John Wiley & Sons, 2007, vol. 6.
  6. M. M. Faghih and M. E. Moghaddam, "Neural grey edge: Improving grey edge algorithm using neural network," in Image Processing (ICIP), 2011 18th IEEE International Conference on. IEEE, 2011, pp. 1705-1708.
  7. T. Akhavan and M. E. Moghaddam, "A color constancy method using fuzzy measures and integrals," Optical review, vol. 18, no. 3, pp. 273-283, 2011. https://doi.org/10.1007/s10043-011-0054-7
  8. V. Agarwal, A. V. Gribok, and M. A. Abidi, "Machine learning approach to color constancy," Neural Networks, vol. 20, no. 5, pp. 559-563, 2007. https://doi.org/10.1016/j.neunet.2007.02.004
  9. R. Stanikunas, H. Vaitkevicius, and J. J. Kulikowski, "Investigation of color constancy with a neural network," Neural Networks, vol. 17, no. 3, pp. 327-337, 2004. https://doi.org/10.1016/j.neunet.2003.12.002
  10. G. D. Finlayson, S. D. Hordley, and P. M. Hubel, "Color by correlation: A simple, unifying framework for color constancy," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 23, no. 11, pp. 1209-1221, 2001. https://doi.org/10.1109/34.969113
  11. A. Gijsenij and T. Gevers, "Color constancy using natural image statistics and scene semantics," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 33, no. 4, pp. 687-698, 2011. https://doi.org/10.1109/TPAMI.2010.93
  12. S. Bianco, G. Ciocca, C. Cusano, and R. Schettini, "Automatic color constancy algorithm selection and combination," Pattern recognition, vol. 43, no. 3, pp. 695-705, 2010. https://doi.org/10.1016/j.patcog.2009.08.007
  13. M. M. Faghih and M. E. Moghaddam, "Multi-objective optimization based color constancy," Applied Soft Computing, vol. 17, pp. 52-66, 2014. https://doi.org/10.1016/j.asoc.2013.11.016
  14. M. Ebner, "Evolving color constancy," Pattern Recognition Letters, vol. 27, no. 11, pp. 1220-1229, 2006. https://doi.org/10.1016/j.patrec.2005.07.020
  15. A. Gorai and A. Ghosh, "grey-level image enhancement by particle swarm optimization," in Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on. IEEE, 2009, pp. 72-77.
  16. A. Choudhury and G. Medioni, "Color constancy using standard deviation of color channels," in Pattern Recognition (ICPR), 2010 20th International Conference on. IEEE, 2010, pp. 1722-1726.
  17. P. V. Gehler, C. Rother, A. Blake, T. Minka, and T. Sharp, "Bayesian color constancy revisited," in Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on. IEEE, 2008, pp. 1-8.
  18. L. Shi and B. Funt, "Re-processed version of the gehler color constancy dataset of 568 images," Simon Fraser University, 2010. [Online]. Available: http://www.cs.sfu.ca/colour/data/
  19. S. K. Subhashdas, B.-S. Choi, J.-H. Yoo, and Y.-H. Ha, "Color image enhancement based on particle swarm optimization with gaussian mixture," in IS&T/SPIE Electronic Imaging. International Society for Optics and Photonics,
  20. F. Ciurea and B. Funt, "A large image database for color constancy research," in Color and Imaging Conference, vol. 2003, no. 1. Society for Imaging Science and Technology, 2003, pp. 160-164.
  21. D. Cheng, D. K. Prasad, and M. S. Brown, "Illuminant estimation for color constancy: why spatial-domain methods work and the role of the color distribution," JOSA A, vol. 31, no. 5, pp. 1049-1058, 2014. https://doi.org/10.1364/JOSAA.31.001049
  22. A. Gijsenij, T. Gevers, and J. Van De Weijer, "Generalized gamut mapping using image derivative structures for color constancy," International Journal of Computer Vision, vol. 86, no. 2-3, pp. 127-139, 2010. https://doi.org/10.1007/s11263-008-0171-3
  23. P. V. Gehler, C. Rother, A. Blake, T. Minka, and T. Sharp, "Bayesian color constancy revisited," in Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on. IEEE, 2008, pp. 1-8.
  24. W. Xiong and B. Funt, "Estimating illumination chromaticity via support vector regression," Journal of Imaging Science and Technology, vol. 50,no. 4, pp. 341-348, 2006. https://doi.org/10.2352/J.ImagingSci.Technol.(2006)50:4(341)
  25. H. R. V. Joze and M. S. Drew, "Exemplar-based color constancy and multiple illumination," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 36, no. 5, pp. 860-873, 2014. https://doi.org/10.1109/TPAMI.2013.169
  26. A. Gijsenij and T. Gevers, "Color constancy: research website on illuminant estimation," 2011. [Online]. Available: http://colorconstancy.com
  27. A. Gijsenij, T. Gevers, and M. P. Lucassen, "Perceptual analysis of distance measures for color constancy algorithms," JOSA A, vol. 26, no. 10, pp. 2243-2256, 2009. https://doi.org/10.1364/JOSAA.26.002243
  28. R. Zakizadeh, M. Brown, and G. Finlayson, "A hybrid strategy for illuminant estimation targeting hard images," in Proceedings of the IEEE International Conference on Computer Vision Workshops, 2015.