DOI QR코드

DOI QR Code

수중 센서 네트워크를 위한 채널 특성기반의 협력 통신 기법

Cooperative Communication Scheme Based on channel Characteristic for Underwater Sensor Networks

  • 지용주 (금오공과대학교 IT융복합공학과) ;
  • 최학희 (금오공과대학교 IT융복합공학과) ;
  • 이혜민 (한국전자통신연구원 지역산업IT연구실) ;
  • 김동성 (금오공과대학교 IT융복합공학과)
  • Ji, Yong-Joo (Department of IT Convergence Engineering, Kumoh National Institute of Technology) ;
  • Choi, Hak-Hui (Department of IT Convergence Engineering, Kumoh National Institute of Technology) ;
  • Lee, Hye-Min (Electronics and Telecommunications Research Institute Local Industry IT Laboratory) ;
  • Kim, Dong-Seong (Department of IT Convergence Engineering, Kumoh National Institute of Technology)
  • 투고 : 2015.09.18
  • 심사 : 2016.06.01
  • 발행 : 2016.06.25

초록

본 논문은 수중 음파 센서 네트워크의 패킷 전송률을 높이고 에너지 소모량을 줄이기 위한 협력 전송 기법을 제안한다. 제안하는 기법은 각 노드에서 가상 안테나 배열이라고 부르는 분산 안테나들이 같은 패킷들을 전송하고, 수신노드에서는 수신된 패킷들을 결합하여 패킷 손실률을 낮춘다. 따라서 높은 전송 손실, 전파 지연 및 주위 잡음과 같은 수중 채널의 고유 특성을 고려한 채널 특성 기반의 협력 전송 기법은 중계노드들을 통한 높은 다이버시티 이득을 제공하여 수중 음파 센서 네트워크의 신뢰성을 향상시킨다. 또한 송신노드에서 채널 상태, 거리 비용, 각 노드 당 남은 에너지를 고려하여 이웃노드들 중에서 목적지와 중계노드를 선택하는 알고리즘을 제안한다. 모의실험 결과는 OPNET Moduler를 통해 제안된 방법의 평균 에너지 소비, 패킷 전달 비율, 응답 시간 측면에서 비-협력 기법 및 SPF(Shortest Path First) 기법보다 향상된 성능을 보여준다.

This paper presents a cooperative transmission scheme for underwater acoustic sensor networks to improve packet transmission rate and reduce energy consumption. Source node transmits duplicated information relayed by distributed antennas called a virtual antenna array. Destination node combines that information to reduce packet error rate. The suggested cooperative scheme enhances the reliability by providing high diversity gains through intermediate relay nodes to overcome the distinct characteristics of the underwater channel, such as high transmission loss, propagation delay, and ambient noises. It is suggested that the algorithm select destinations and potential relays from a set of neighboring nodes that utilize distance cost, the residual energy of each node and local measurement of the channel conditions into calculation. Simulation results show that the proposed scheme reduces average energy consumption, response time, and increases packet delivery ratio compared with the SPF(Shortest Path First) and non-cooperative scheme using OPNET Moduler.

키워드

참고문헌

  1. P. T. A. Quang, D.-S. Kim, "Throughput-Aware Routing for Industrial Sensor Networks: Application to ISA100.11a," IEEE Trans. on Industrial Informatics, Vol. 10, no. 1, pp. 351-363, 2014. https://doi.org/10.1109/TII.2013.2255617
  2. P. T. A. Quang, D.-S. Kim, "Enhancing Real-time delivery of Gradient Routing for Industrial Wireless Sensor Networks," IEEE Trans. on Industrial Informatics, Vol. 8, No. 1, pp. 61-68, 2012. https://doi.org/10.1109/TII.2011.2174249
  3. D. Pompili and I. Akyildiz, "Overview of Networking Protocols for Underwater Wireless Communications," IEEE Communications Magazine, Vol. 47, no. I, pp. 97-102, Jan 2009.
  4. Y. Luo, L. Pu, M. Zuba, Z. Peng and J. H. Cui, "Challenges and Opportunities of Underwater Cognitive Acoustic Networks," IEEE Transactions on Emerging Topics in Computing, Vol. 2, no. 2, pp. 198-211, June 2014. https://doi.org/10.1109/TETC.2014.2310457
  5. Cho, Y, Kim, J, Yang, W, Kang, C, "MIMO:Channel Capacity," Wiley-IEEE Press, pp. 263-280, 2010.
  6. Tran Nhon and D. S. Kim, "Real-time message scheduling for ISA100.11a networks", Computer Standards & Interfaces, Vol. 37, pp. 73-79, Jan 2015. https://doi.org/10.1016/j.csi.2014.06.003
  7. J. Laneman, D. Tse, and G. Womell, "Cooperative diversity in Wireless Networks: Efficiency Protocols and Outage Behavior," IEEE Transactions, Vol. 50, no. 12, pp. 3062-3080, Dec 2004.
  8. C. W. Ahn and l-H. Lee, "Wireless cooperative communication: A Survey," The 5th International Conference on Ubiquitous Information Management and Communication, pp. 78:1-78:6, Feb 2011.
  9. A. Bletsas, A. Khisti, D. Reed, and A. Lippman, "A Simple Cooperative Diversity Method Based on network path selection," IEEE Journal on Selected Area in Communication, Vol. 24, no. 3, pp. 659-672, March 2006. https://doi.org/10.1109/JSAC.2005.862417
  10. R. J. Urick, R. J. Urick, Principles of Underwater Sound for Engineers, McGrawHill, pp. 35-88, 1967.
  11. A. Stefanov and M. Stojanovic, "Design and Performance Analysis of Underwater Acoustic Networks," IEEE Journal on Selected Areas in Communications, Vol. 29, no. 10, pp. 2012-2021, Dec 2011. https://doi.org/10.1109/JSAC.2011.111211
  12. D. R. Gimlin, M. S. Keener and J. F. Lawrence, "Maximum Likelihood Stacking in White Gaussian Noise with Unknown Variances," IEEE Transactions on Geoscience and Remote Sensing, Vol. GE-20, no. 1, pp. 91-98, Jan 1982. https://doi.org/10.1109/TGRS.1982.4307527
  13. M. Rahmati and T. M. Duman, "Achieving Delay Diversity in Asynchronous Underwater Acoustic (UWA) Cooperative Communication Systems," IEEE Transactions on Wireless Communications, Vol. 13, no. 3, pp. 1367-1379, March 2014. https://doi.org/10.1109/TWC.2014.020414.130538
  14. M. Rahmati and T. M. Duman, "Achieving Delay Diversity in Asynchronous Underwater Acoustic (UWA) Cooperative Communication Systems," IEEE Transactions on Wireless Communications, Vol. 13, no. 3, pp. 1367-1379, March 2014. https://doi.org/10.1109/TWC.2014.020414.130538
  15. S. Al-Dharrab, M. Uysal and T. M. Duman, "Cooperative underwater acoustic communications [Accepted From Open Call]," IEEE Communications Magazine, Vol. 51, no. 7, pp. 146-153, July 2013. https://doi.org/10.1109/MCOM.2013.6553691
  16. M. U. Ilyas, "Analytical and Quantitative Characterization of Wirelss Sensor Networks," Michigan State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy, pp. 1-221, 2009.
  17. J. Xu, K. Li, G. Min, K. Lin, and W. Qu, "Energy-Efficient Tree-based Multipath Power Control for Underwater Sensor Networks," IEEE Transactions on Parallel and Distributed Systems, Vol 23, no. 11, pp. 2107-2116, Nov 2012. https://doi.org/10.1109/TPDS.2012.49