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Abstract 
 

Recently, Peer-to-Peer (P2P) live streaming assisted by the cloud computing has attracted 
considerable attention to improve the reliability of the P2P such as the resilience to peer churn 
and the shortage of upload capacity. The cost of cloud-assistance is comprised of the number 
of requests issued to the cloud and the amount of data fetched from the cloud. In this paper, we 
propose three techniques to reduce the cost of such a cloud-assistance. More concretely, in the 
proposed method, 1) each peer which lost its parent in the overlay can find a new parent by 
referring to the information registered in the cloud, 2) several peers which proactively fetch 
chunks from the cloud are dynamically invested, and 3) the number of requests issued to the 
cloud is reduced by allowing peers to fetch a collection of chunks using a single request. The 
performance of the proposed method is evaluated by simulation. The simulation results 
indicate that it reduces the cost of conventional scheme by 46% while guaranteeing the quality 
of live streaming service. 
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1. Introduction 

In recent years, several commercial streaming services such as PPLive and UUSee have 
adopted Peer-to-Peer (P2P) technology to deliver live contents to thousands of users. 
Although it could realize a scalable video streaming with low cost compared with classical 
client/server systems [1-3], P2P live streaming is not reliable enough as it relies on the 
voluntary contribution of the participant peers. Therefore, it is hard to guarantee the quality of 
streaming service such as playback continuity and short playback delay [4]. To overcome such 
issues, hybrid of P2P with other infrastructures such as the cloud computing and content 
delivery networks has attracted considerable attentions in recent years [5-8]. 

In this paper, we focus on the assistance of P2P live streaming by the cloud with a storage 
service and a cloud content delivery network (CCDN)1. The assistance of P2P live streaming 
by the cloud is generally realized by storing latest chunks in the live stream to the storage 
service in the cloud. In addition, each peer is allowed to fetch missing chunks from the storage 
service through edge locations of the CCDN. These edge locations fetch chunks from the 
storage service upon receiving requests from peers. Another way for the assistance of P2P by 
the cloud is to rent computing instances and to use them as virtual peers to disseminate live 
stream to the existing peers [6-7]. However, the rent of computing instances is less flexible 
than the rent of upload bandwidth (e.g., the minimum rent period of computing instances is 
generally one hour). Thus to refine the cost of cloud assistance while maintaining the high 
performance, we take the former approach to propose a cost effective cloud-assisted P2P live 
streaming system. 

The cost of cloud assistance is comprised of the amount of data fetched from the CCDN 
and the number of requests handled by the cloud. The latter cost is further divided into requests 
handled by the storage service and requests handled by the CCDN. We propose three 
techniques to reduce the cost of such a cloud assistance and evaluate them through extensive 
simulations. As the baseline model of our study, we use a multiple-tree overlay adopted in 
SplitStream [9]. In this model, a given live stream is equally divided into sub-streams by the 
sequence number of chunks contained in the stream. Each sub-stream is delivered to all peers 
(subscribers) through a different delivery tree. We assume that the sets of internal nodes of the 
trees must be mutually disjoint as in SplitStream. In such a multi-tree-structured P2P network, 
the leave of an internal node suspends the forwarding of sub-stream to the descendants. That 
significantly increases the amount of data fetched from the CCDN. The first technique reduces 
such a cost by exploiting the cloud storage service to explicitly register “orphaned” peers 
which lost their parent in the delivery trees. Match-making between orphaned peers and 
internal peers with enough capacity can be done by referring to the registered information. 
That significantly reduces the time before an orphaned peer becomes a child of a new parent in 
the delivery tree. However, it incurs additional cost due to requests handled by the storage 
service. 

The second and third techniques are based on the first technique. The key idea of the 
second technique is to proactively fetch chunks by several internal nodes selected from each 
tree. The selected node (peer) plays the role of a root for the corresponding tree, which reduces 
the height of the delivery tree and the load of other internal nodes. The number of peers to be 
selected is controlled by referring to the number of orphaned peers registered to the storage 

1  Example of CCDN includes CloudFront: http://aws.amazon.com/cloudfront 
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service. That is by the reason if the number of selected peers is too large, the amount of 
proactively fetched chunks becomes excessive and if it is too small, the cost due to orphaned 
peers increases. The third technique reduces the number of requests handled by the CCDN in 
the second technique by allowing peers to request a collection of chunks instead of individual 
chunks. More concretely, when proactively fetching chunks from the CCDN as a selected peer 
for tree 𝑡𝑡, it acquires consecutive chunks associated with the whole stream (instead of a 
particular sub-stream) in the form of frames of chunks, and serves as a root for tree 𝑡𝑡. 

The performance of the proposed method is evaluated by simulation. We implement our 
simulator on top of an event-driven P2P simulator [10]. The simulation results are summarized 
as follows. 

• In comparison with the baseline model, the first technique is able to save 33% of the 
system monetary cost. 

• The second technique saves extra 5% (38% in total) by reducing the number of 
orphaned peers per failure due to the short height of the delivery tree. 

• The third technique saves up to 46% by reducing the number of requests. 
• Due to the assistance of the cloud, all techniques are able to guarantee the quality of 

live streaming service. 
The remainder of this paper is organized as follows. Section 2 overviews related works. 

Section 3 formally describes a model of hybrid P2P consisting of multi-tree overlay assisted 
by the cloud. Section 4 describes the baseline model of live streaming. Section 5 describes the 
details of the proposed method. Section 6 summarizes the results of simulations. Finally, 
Section 7 concludes the paper with future work. 

2. Related Work 
Recently, cloud computing has become a promising platform offering an elastic resource 
allocation and cost-effective (pay-as-you-go) model. Researchers leveraged the cloud 
computing for providing different services. A cost-effective content distribution is discussed in 
[11-12]. Mobile users are supported by the cloud to improve the quality of streaming service in 
[13-14]. Authors in [15] designed a migration strategy for a video-on-demand (VoD) provider 
to partially migrate its videos to the cloud trying to minimize its cost. In [16], a mechanism is 
proposed to retrieve video segments’ metadata over the cloud for VoD. CloudStraem [17] 
transcoded videos to SVC (scalable video coding) over the cloud and delivered them in an 
adaptive manner to network dynamics through a cloud-based SVC-proxy. That leads the 
researchers to focus on the efficient scheduling of user media requests to cloud servers. To 
reduce the response time and cost, the allocation of virtual machines to physical servers by 
considering the requirements of the cloud media service is discussed in [18]. Authors in 
[19-20] developed a blind scheduling algorithm for mobile media cloud where no prior 
knowledge is available on the request rate and service time. Jointly, the algorithm ensures 
simplicity, fairness among servers and minimized user waiting time. To minimize the cost and 
assure the streaming quality from a video provider perspective, researchers studied different 
mechanisms to allocate cloud resources based on the dynamic demand. In [21-22] provisioned 
resources in the cloud are dynamically scaled up and down to meet the user demands in VoD. 
Authors in [23] studied how to optimally procure virtual machines for VoD where the cost and 
quality of experience trade-off is investigated under Amazon pricing models.  

Specifically, live-streaming has a high dynamism in peer population and the most stringent 
latency requirements. There are many proposals concerned with the hybrid of P2P live 
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streaming with other infrastructures, such as content delivery networks (CDNs) and the cloud 
computing. Examples of P2P-assisted CDNs include LiveSky [24], PSP [25] and PACDN [26]. 
In addition, PROSE [27] efficiently utilizes CDN resources by proactively injecting them into 
the P2P. More concretely, it divides CDN resources into two parts, and uses the first part to 
serve streaming contents on demand. The second part is used to proactively push streaming 
contents to several selected peers (super-peers) to improve the overall performance. 
Unfortunately, provisioning resources in the CDN is semi-static, and such resources could be 
either insufficient (affects the QoS) or underutilized (extra cost) due to the highly dynamic 
demand.  

In regard to the hybrid cloud-P2P live streaming, CALMS [5] presented a general 
framework to migrate the live streaming service to the cloud. The cloud servers are rented 
dynamically from different regions based on a demand prediction mechanism. AngleCast [6] 
is a typical P2P-assisted cloud, Computing instances (EC2) called angels are deployed 
on-demand to maintain a predefined high streaming rate. These angels are augmented with an 
optimized multiple-tree P2P overlay to reduce the cost of cloud resources. A central entity 
“registrar” is used to orchestrate the multiple-tree overlay.  Clive [7] is a cloud-assisted P2P 
based on a mesh-structured P2P overlay. To guarantee the streaming quality, it rents helpers 
from the cloud, which are either active or passive (i.e., computing instances or storage 
service). Clive determines which and how many helpers to be rented so as to maximize the 
system performance while bounding the cloud cost. Most recently, VMCAST [8] is proposed 
as a stability enhancing solution for the tree-based multicast overlays based on the cloud 
virtual machine assistance.  

 In this paper, we propose a cloud-assisted P2P based on a multi-tree-structured P2P 
overlay. Unlike mesh-based P2P overlay, multi-tree-structured P2P overlay has the following 
flaws while it has advantages such as the short playback delay and low overhead: 1) the chunk 
size is smaller than in mesh-based overlays which increases the number of requests submitted 
to the cloud to acquire missing chunks; and 2) the leave of a peer causes suspension of the 
video stream at descendants of the leaving peer which also causes the increase in the number 
of requests submitted to the cloud. The proposed method scales the bandwidth resources 
flexibly by asking more/fewer peers to proactively fetch the streaming data from the cloud 
CDN rather than renting computing instances. 

3. System Model 

3.1 Overview 
This paper focuses on the hybrid of P2P and cloud computing platform. The role of P2P is to 
deliver live streams issued by a media server to the peers (users) through a P2P overlay. Along 
with that, the role of cloud platform is to assist the delivery by using a storage service and a 
cloud content delivery network (CCDN). For the P2P overlay, we adopt a multiple tree 
structure. Such a structure is weak against peer churn compared with other structures. 
However, it is efficient in terms of the latency and the message overhead, and it exhibits a 
good performance with respect to the broadcasting time [28-29] and the maximum streaming 
rate [30].  In other words, the multiple-tree structure is an appealing structure if we can 
overcome its shortcomings (e.g., stability and robustness) by combining it with other services 
such as the cloud. In our model, we consider a P2P overlay consisting of 𝑁𝑁 trees which span 
all peers. Live stream is a sequence of chunks which are given unique sequence numbers 
starting from 0. Chunks are equally divided into 𝑁𝑁 sub-streams so that the 𝑖𝑖th sub-stream 
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consists of chunks with sequence number 𝑗𝑗 ≡ 𝑖𝑖 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁). The reader should note that by 
letting 𝑟𝑟 be the bit-rate of the given stream, the bit-rate of each sub-stream is given as 𝑟𝑟/𝑁𝑁. As 
will be described later, chunks are delivered to the peers in such a way that the 𝑖𝑖th sub-stream 
is delivered through the 𝑖𝑖th tree for each 0 ≤ 𝑖𝑖 ≤ 𝑁𝑁 − 1. 

Let 𝑐𝑐(𝑢𝑢) denote the upload bandwidth of a peer 𝑢𝑢. Since the bit-rate of each sub-stream 
is 𝑟𝑟/𝑁𝑁, 𝑢𝑢 can accommodate at most  𝑠𝑠(𝑢𝑢)  ≐  ⌊𝑐𝑐(𝑢𝑢)𝑁𝑁/𝑟𝑟⌋ peers as the “children” in the P2P 
overlay. 𝑠𝑠(𝑢𝑢) is called the capacity of 𝑢𝑢 and we say that 𝑢𝑢 has a free capacity if it has less than 
𝑠𝑠(𝑢𝑢) children. The resource index 𝑅𝑅 of a P2P concerned with the delivery of the given stream 
is the ratio of the available capacity of the P2P to the capacity which is necessary to deliver 𝑁𝑁 
sub-streams to all peers in the P2P, i.e., 

 
                                                    𝑅𝑅 ≐ ∑ 𝑠𝑠(𝑢𝑢)𝑢𝑢 ∈𝑉𝑉

𝑁𝑁 ×|𝑉𝑉|                                                               (1) 
 

where 𝑉𝑉 is the set of peers in the P2P. In the following, we are particularly interested in cases 
such that 𝑅𝑅 ≃ 1. Note that in hybrid live streaming systems, the resource index of the P2P 
indicates the amount of contribution of the cloud platform; i.e., the amount of contribution of 
the cloud should be large as the value of resource index decreases. 

As for the mechanism to detect the leave of adjacent peers in the P2P, we assume that each 
peer exchanges hello messages with its neighbors for every 𝜏𝜏 seconds. Similarly, each peer 
detects the leave of parent in a delivery tree by monitoring the delay of chunks contained in the 
corresponding sub-stream. 

3.2 Cloud Computing Platform 
Fig. 1 illustrates the behavior of the cloud platform. At first, it continuously receives a stream 
of chunks from the media server, and keeps chunks issued in the recent 𝑚𝑚 seconds in the 
storage service. Each peer in the P2P can request these chunks at any time, and requested 
chunks are delivered to the requester through edge locations in the CCDN. Such a request is 
issued by a peer when it detects the missing of a chunk in a sub-stream. A chunk is considered 
to be missed when the remaining time to its playback point meets a certain threshold. Then, a 
peer and its descendants may consider same chunks as missed in a close time and acquire them 
through the CCDN.  Moreover, when a peer acquires the missed chunk from the CCDN, it will 
be busy in forwarding the latest chunks to its children. Hence, in this case, chunks acquired 
through the CCDN are not forwarded to the children to bound the overhead and redundant data. 
A different case, as in section 5.2, is that a subset of peers (proactively) issue requests to fetch 
some (not-yet missed) chunks from CCDN, i.e., to increase the system throughput. 
Forwarding these chunks to children is necessary to get the benefit of the proactive design. 

In addition to the recently issued chunks, in the proposed method, the storage service keeps 
information concerned with “orphaned” peers. We say that a peer is orphaned if the 
connection to the parent is lost. See Section 5 for the details. 

In the following, we measure the cost of such a cloud assistance by using a pricing model 
used in actual cloud computing platform. More concretely, we use Amazon’s pricing model 
[31-32] in which the customer should pay for: 1) the amount of data bandwidth fetched from 
the CCDN, 2) the number of requests issued to the CCDN and 3) the number of requests issued 
to the storage service. We omit the other costs such as the storage cost, as they are common for 
all cloud assisted schemes. 
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Fig. 1. Cloud-assisted P2P live streaming model. 

4. Baseline Model 
This section introduces a model of hybrid P2P systems which will be used as a baseline in 
succeeding sections. This model is a variant of the SplitStream live streaming system [9] in 
which 𝑁𝑁 delivery trees are organized so that internal nodes of the trees are mutually disjoint. 
In other words, each peer can join at most one tree as an internal node and the other trees as a 
leaf node. Let 𝑇𝑇 be the set of 𝑁𝑁 trees. At the time of participation, each peer determines the 
role of the peer in each tree; i.e., internal or not. Let 𝜎𝜎:𝑉𝑉 × 𝑇𝑇 → {0,1} be a function indicating 
the selection made by the peers, where 𝜎𝜎(𝑝𝑝, 𝑡𝑡) = 1 if 𝑝𝑝 joins tree 𝑡𝑡 as a candidate of internal 
node. Note that in the SplitStream, such a selection is conducted in a random manner. 

Assume that peer 𝑞𝑞 submits peer 𝑝𝑝 a request to subscribe to a sub-stream through tree 𝑡𝑡, 
where 𝑝𝑝 is a peer with 𝜎𝜎(𝑝𝑝, 𝑡𝑡) = 1. Peer 𝑝𝑝  accepts the request if it has a free capacity. 
Moreover, 𝑝𝑝 accepts the request if 𝜎𝜎(𝑞𝑞, 𝑡𝑡) = 1 and it has a child 𝑘𝑘 with 𝜎𝜎(𝑘𝑘, 𝑡𝑡) = 0. Then 𝑝𝑝 
admits 𝑞𝑞 as a new child after pushing out 𝑘𝑘 from the tree (thus 𝑘𝑘 is orphaned at this time). If it 
does not accept the request, 𝑝𝑝 forwards the request to a child 𝑘𝑘′ with 𝜎𝜎(𝑘𝑘′, 𝑡𝑡) = 1, and such a 
forwarding is repeated until it reaches a peer which accepts the request or fails to be forwarded 
to a child. Note that this process always succeeds for 𝑞𝑞 with 𝜎𝜎(𝑞𝑞, 𝑡𝑡) = 1 since any internal 
node with a deepest level of the tree either has a free capacity or has a leaf child 𝑘𝑘′′ 
with 𝜎𝜎(𝑘𝑘′′, 𝑡𝑡) = 0, while it might fail for 𝑞𝑞 with 𝜎𝜎(𝑞𝑞, 𝑡𝑡) = 0. 

In the baseline model, to reduce the length of such forwarding steps, we assume that the 
first peer 𝑝𝑝 receiving the request from 𝑞𝑞 with 𝜎𝜎(𝑞𝑞, 𝑡𝑡) = 1 is selected in the following manner: 

1) if 𝑞𝑞 is an orphaned peer and the depth of 𝑞𝑞 in the tree was two or more before being 
orphaned, the former grandparent of 𝑞𝑞 is selected as 𝑝𝑝, and 

2) otherwise, a random peer is selected as 𝑝𝑝. 
In addition, if 𝜎𝜎(𝑞𝑞, 𝑡𝑡) = 0 , 𝑞𝑞  does not request any 𝑝𝑝  but registers itself to a pool of 

orphaned peers concerned with tree 𝑡𝑡, and waits for a response from peers with a free capacity. 
In the baseline model, the registration message issued by 𝑞𝑞 is collected to the root of tree 𝑡𝑡′ 
with 𝜎𝜎(𝑞𝑞, 𝑡𝑡′) = 1 (i.e., it is sent to the parent of 𝑞𝑞 in tree 𝑡𝑡′ and is forwarded up to the root of 
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the tree). Such collected messages are forwarded down from the root of tree 𝑡𝑡, so that they are 
received by an internal node of 𝑡𝑡 with a free capacity, if any. If 𝑞𝑞 receives several responses, it 
accepts only one and discards others. 

Thus the cost of the baseline model concerned with the cloud assistance is comprised of the 
number of requests issued to the CCDN and the amount of chunks fetched from the CCDN. 
Results of detailed evaluation are given in Section 6. 

5. Proposed Method 
The proposed method consists of three techniques; 1) quick recovery from the status being 
orphaned with the aid of cloud storage services, 2) proactive fetching of chunks from the 
CCDN, and 3) the reduction of the number of requests to the CCDN with the notion of frames. 
In the succeeding subsections, we explain each technique in detail. 

5.1 First Technique: Quick Recovery with Storage Service 
In hybrid P2Ps, once a peer becomes orphaned, the delivery of chunks to the peer is suspended 
until it becomes a child of a new parent. During such a suspension, the orphaned peer should 
fetch missing chunks from the CCDN to keep the playback of the live stream. Thus, a short 
suspension time will significantly reduce the amount of fetched data. 

The basic idea of the first technique is to reduce such a suspension time with the aid of 
cloud storage services (note that it is experimentally evaluated that general cloud storage 
services can serve as many requests as it receives [7]). More concretely, when a peer becomes 
orphaned, it sends a PUT request to a bucket in the cloud storage to add a file concerned with 
the event. The directory of buckets and the way of authentication should be known to all peers 
in advance. The file name encodes peer’s IP, port, and the name of sub-stream, i.e., it needs to 
add different files for each tree. On the other hand, any peer with a free capacity can find 
orphaned peers by sending a LIST request to the bucket which returns a list of file names with 
necessary metadata. After obtaining it, the free capacity peer tries to accommodate orphaned 
peers as new children until its capacity is exhausted. Naturally, each orphaned peer which 
becomes a child of a new parent deletes the corresponding file in the bucket by sending a 
DELETE request. 

Such a match-making mechanism is also used to balance the load of trees. More concretely, 
we modify the selection of a tree conducted by each newly arrived peer in the baseline model 
in such a way that it joins the tree as an internal node with the largest number of orphaned 
peers (recall that such a number of orphaned peers can be easily obtained by sending a LIST 
request to the bucket). 

Additional cost due to the first technique is the number of requests handled by the storage 
service. Usually, requests to the storage service are more expensive than requests to the CCDN 
(see [31] and [32] for the example of cloud price in Amazon). Still, as will be evaluated later, 
the additional cost incurred by the first technique is smaller than the benefit of quick recovery. 

5.2 Second Technique: Proactive Bandwidth Investment 
The key idea of the second technique is to allow several peers selected from each tree to 
conduct a proactive fetch of chunks from the CCDN so that the delayed chunks due to the 
shortage of P2P capacity does not occur. Such selected peers, called cloud peers hereafter, 
plays the role of a root concerned with the delivery of the corresponding sub-stream. See         
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Fig. 2 for illustration. As will be evaluated later, with the notion of cloud peers, we could 
reduce the depth of the overlay and enlarge the available capacity of the delivery tree. 

 
Fig. 2. Proactive bandwidth investment. Assume the estimated P2P shortage is 4. Then, two peers are 
selected in each tree to act as cloud peers, where peers A and B fetch sub-stream 1 from the CCDN, and 

peers C and D fetch sub-stream 2. 
 

The number of cloud peers is related to P2P shortage and determined as follows (see Step 1 
of Algorithm 1). At first, the server periodically issues a LIST request to the storage service to 
acquire the latest list 𝑂𝑂 of orphaned peers. A request and computational overhead is incurred 
when the length of such a period is short (few seconds). On the other hand, a long period might 
make it difficult to follow the dynamic change in the P2P shortage. In our implementation we 
found a period of 30 seconds as a good balance. Since  the list 𝑂𝑂 might not accurately reflect 
the shortage of the P2P capacity (i.e., 𝑁𝑁 × |𝑉𝑉| ≤  ∑ 𝑠𝑠(𝑢𝑢) 𝑢𝑢∈𝑉𝑉 ), the server identifies a 
subset 𝐿𝐿(⊆ 𝑂𝑂) which have been orphaned for a time longer than 𝜏𝜏𝑛𝑛, and regards it as a subset 
of actual orphaned peers due to P2P shortage. A typical value of 𝜏𝜏𝑛𝑛 is four seconds, while as 
for the selection of the value of 𝜏𝜏𝑛𝑛, there is a tradeoff between the cost of proactive fetching 
and the cost of reactive fetching. Automatic adjustment of parameter 𝜏𝜏𝑛𝑛 is left as a challenging 
future work. 

If |𝑂𝑂| > 𝜃𝜃 holds for a predetermined threshold 𝜃𝜃, and all trees in 𝑇𝑇 contain at least one 
peer belonging to subset 𝐿𝐿, then the server selects |𝐿𝐿|/𝑁𝑁 random peers from each tree and asks 
them to act as cloud peers (see Step 2 of Algorithm 1). The reader should note that the latter 
condition is necessary to exclude extreme cases in which the distribution of peers in 𝐿𝐿 across 
trees is highly imbalanced since such an imbalance could be naturally resolved by accepting 
more peers to the system without investing cloud peers. If |𝑂𝑂| ≤ 𝜃𝜃′ for some 𝜃𝜃′ ≤  𝜃𝜃, on the 
other hand, the server eliminates a set of cloud peers to reduce the cost of proactive fetching. 
Eliminated cloud peers rejoin their tree, while keeping to fetch chunks from the CCDN till 
they become a child of new parents. A typical value of threshold 𝜃𝜃 is 10𝑁𝑁, which implies that 
it allows each tree to have ten orphaned peers on average. In the implementation, 5𝑁𝑁 cloud 
peers are eliminated when |𝑂𝑂| ≤ 𝜃𝜃′. Thus, each tree will have new five orphaned peers to be 
adopted by the free capacity peers. Selecting these values as a multiple of 𝑁𝑁 allows us to have 
a fair comparison between the second and third technique (section 5.3) by having the same 
ratio of selected to eliminated cloud peers.  
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Algorithm 1. Selection of cloud peers. 

1: 𝑶𝑶 ← The set of all orphaned peers  
2: 𝑳𝑳 ←  ∅  
3: 𝑵𝑵 ← The number of trees ( sub-streams)  
4: 𝑪𝑪(𝑵𝑵) ← Array represents the set of cloud peers in each tree.  
5: 𝐼𝐼(𝑁𝑁) ← Array represents the set of internal peers in each tree.  

(𝐶𝐶[𝑖𝑖] ⊂ 𝐼𝐼[𝑖𝑖] for 0 ≤ 𝑖𝑖 ≤ 𝑁𝑁 − 1 ) 
  
 //Step 1: Determine the number of cloud peers. 
6: for each peer 𝑗𝑗 in 𝑂𝑂 do  
7: 𝒕𝒕𝒋𝒋  ← the time when peer 𝑗𝑗 was registered as an orphaned peer   
8: if  current_time − 𝒕𝒕𝒋𝒋   >  𝜏𝜏𝑛𝑛 then 
9: 𝑳𝑳 ← 𝑳𝑳 ∪ {𝒋𝒋} 
10: end if 
11: end for  
 // |𝐿𝐿| represents the estimated shortage of P2P capacity 
  
 //Step 2: adding / removing cloud peers. 
12: 𝜽𝜽 ←  𝟏𝟏𝟏𝟏𝟏𝟏  
13: if  |𝑶𝑶| >  𝜽𝜽 and every tree contains at least one peer in 𝑳𝑳 then 
14: for 𝒊𝒊 = 𝟎𝟎 to 𝑵𝑵 − 𝟏𝟏 do 
 // select new |𝐿𝐿|/𝑁𝑁 cloud peers in each tree. 
15: 𝑈𝑈 ← a set of |𝐿𝐿|/𝑁𝑁 peers randomly chosen form  𝐼𝐼[𝑖𝑖] ∖ 𝐶𝐶[𝑖𝑖]  
16: 𝑪𝑪[𝒊𝒊] ←  𝑪𝑪[𝒊𝒊] ∪ 𝑼𝑼 
17: end for 
18: else 
19: if  |𝑶𝑶| ≤  𝜽𝜽′ then 
 //eliminate 5𝑁𝑁 cloud peers from each tree 
20: for 𝒊𝒊 = 𝟎𝟎 to 𝑵𝑵 − 𝟏𝟏 do 
21: 𝑈𝑈′  ← a set of 5 peers randomly chosen form 𝐶𝐶[𝑖𝑖]  
22: 𝑪𝑪[𝒊𝒊] ←  𝑪𝑪[𝒊𝒊] ∖ 𝑼𝑼′ 
23: end for 
24: end if 
25: end if 
 

The cost due to the second technique is similar to the first technique, while it has an 
apparent advantage so that the depth of the trees becomes much smaller and a disadvantage so 
that the server should manage the set of cloud peers. 

5.3 Third Technique: Less Requests to the CCDN 
The objective of the third technique is to reduce the number of requests issued to the CCDN 
with the notion of frames. More concretely, when a cloud peer proactively fetches chunks 
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from the CCDN, it requests a frame consisting of 𝐹𝐹 consecutive chunks instead of individual 
chunks (see Fig. 3 for illustration). In addition, after being selected as a cloud peer for tree 𝑡𝑡, it 
fetches chunks corresponding to the full stream from the CCDN, while it forwards chunks 
corresponding to a sub-stream associated with tree 𝑡𝑡 to the children in the tree. Then to keep 
the amount of data fetched from the CCDN, we decrease the number of cloud peers from 
|𝐿𝐿|/𝑁𝑁 to |𝐿𝐿|/𝑁𝑁2. See Fig. 4 for illustration. 

 
Fig. 3. The structure of frames consisting of 10 consecutive chunks. In this example, each frame 

corresponds to a part of the stream of 1 second. 
 
Similar effect to the notion of frames could be obtained by increasing the size of each 

chunk. However, in tree-based streaming systems, it is preferable to have small chunks since 
each peer needs to receive the whole chunk before forwarding it to the children. In fact, IP 
packet of 1 Kbyte length is used as the basic chunk in the SplitStream [9]. This is in contrast to 
mesh-based systems which use large chunks (60 Kbytes in [1], 14 Kbytes in some PPLive 
channels [33]) to avoid excessive overhead of signaling per chunk. 

The increase of frame size 𝐹𝐹 reduces the number of requests issued to the CCDN inverse 
proportionally. For example, assume that the stream carries 20 chunks per second and the 
server invested 20 cloud peers, i.e., the CCDN should receive 400 requests per second from 
cloud peers under the second technique. If the frame size is set to 10, which corresponds to 0.5 
second, the number of requests reduces to 40 per second (90 % save), and if the frame size is 
set to 40, it reduces to 10 per second (97.5 % save). A disadvantage of the large frame size is 
the waste of chunks which occurs when the set of cloud peers changes. For example, by 
scaling the number of cloud peers down, some of them need to rejoin all trees by finding new 
parents. Such new parents may not have received the latest chunks yet so they will forward 
duplicated chunks. Also, when asking a peer to act as a cloud peer, that peer will request the 
latest frame which may include some of already received chunks. Another way of wasting the 
chunks is when a cloud peer leaves the system after asking a large frame from the CCDN. In 
the evaluation given in the next section, we set the value of 𝐹𝐹 to two seconds. 

6. Evaluation 
To evaluate the performance of the proposed method, we conducted extensive simulations 
using an event-driven packet level simulator encoded in C++. The simulator is implemented 
on top of a peer to peer simulator [10]. It uses a real world node-to-node latency matrix 
measured on the Internet [34] with the average end-to-end delay 79 ms, while it does not 
consider the queuing management in routers. 

In the following, we compare the following four schemes: 
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Fig. 4. Third Technique. Assume 𝑁𝑁 =  2 and the P2P shortage is four sub-streams. One peer is selected 
as a cloud peer for each tree. Peer A (resp. peer B) fetches the full stream from the CCDN and acts as a 

root in the first tree (resp. the second tree). 
 

• cloud-assisted P2P live streaming scheme Baseline which is based on the baseline 
model; 

• scheme Orphan which is based on the first technique; 
• scheme Proactive which is based on the first and second techniques; and 
• scheme Frame which is based on the first, second and third techniques.  

As for the metrics for evaluation, we consider: 1) the amount of data fetched from the 
CCDN (Section 6.2), 2) the number of requests handled by the cloud (Section 6.3), and 3) the 
quality of live stream including the delivery ratio and the average playback delay (Section 6.5). 
We also calculate the monetary cost of the schemes by assuming the cloud price of AWS 
(Section 6.4). 

6.1 Setup 
In the simulations, we consider a video stream of 1000 Kbps which is the bit-rate 
recommended by YouTube2 for the 480p video quality. The chunk size is 6250 bytes and the 
number of sub-streams is 𝑁𝑁 = 5 (i.e., each sub-stream carries 4 chunks per second). Each peer 
starts playback after buffering the stream for 15 seconds, and it sends a request for a chunk to 
the CCDN when the remaining time before playing back the chunk becomes 2 seconds. The 
frame size in Frame is set to 𝐹𝐹 = 40, i.e., each frame corresponds to a part of the stream of 2 
seconds. 

The number of peers is 1000 and the upload bandwidth of the server is 2 Mbps. To reflect 
the heterogeneity of peers, we consider the distribution of upload bandwidth summarized in 
Table 1 (based on [35]); e.g., the upload bandwidth of 147 peers is 512 Kbps which indicates 
that the capacity of these peers is  ⌊512/200⌋  =  2 . Each peer possesses a download 
bandwidth exceeding 1000 Kbps to enjoy the live streaming. The resource index calculated 
from the above parameters is 𝑅𝑅 =  0.944, which is slightly less than 1.00. Thus, the shortage 
0.056 (= 1.000 – 0.944) must be compensated by the CCDN. 

2 https://support.google.com/youtube/ 
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Table 1. Distribution of the upload bandwidth of peers. 

Bandwidth [Kbps]  384 512 768 1024 3000 
Share [%] 32.9 14.7 8 28.1  16.3 
Capacity 1 2 3 5 15 

 
The simulation time is fixed to 900 seconds. To realize a dynamic behavior of peers, we 

use real P2P traces as in [2], in which the number of online peers gradually increases from 0 to 
around 1000 and then reaches a stable state in which 1% of peers join/leave in each second. 
See Fig. 5 for illustration. Among leaving peers, 95% of them gracefully leave and 5% of them 
ungracefully leave [36], where the latter is detected by observing the lag of chunks received 
from the parent and the missing of heartbeat messages transmitted by the children every 5 
seconds. We conduct such a simulation run 15 times and take an average. The total download 
time per simulation run is 13025 min on average (note that it is smaller than 15000 min (= 900 
×  1000/60) due to churn).  In addition, the total amount of chunks downloaded by the peers is 
93.16 GB, which implies that 5.21 GB of chunks corresponding to 0.056 (= 1 – 0.944) of 
downloaded chunks must be fetched from the CCDN, where 0.944 is the resource index of the 
hybrid P2P. 

 
Fig. 5. Number of online peers throughout the simulation. 

 

6.2 Amount of Data Fetched from the CCDN 
At first, we evaluate the amount of data fetched from the CCDN. Fig. 6 summarizes the results, 
where the horizontal axis is the elapsed time and the vertical axis is the fetch rate per second. 
The temporal variance of the fetch rate is due to the join/leave of peers and we could observe 
that the proposed schemes reduce the fetch rate of Baseline by about 40 %. The total amount 
of fetched data during simulation is shown in Fig. 7. Since at least 5.21 GB of chunks must be 
fetched from the CCDN, the proposed techniques certainly mitigate additional fetch due to 
churn. For example, although it is 7.28 (= 12.49 – 5.21) GB under Baseline, it significantly 
reduces to 1.33 (= 6.54 – 5.21) GB under Proactive. 

The badness of Frame with respect to additional fetches is because of the redundancy 
mainly caused by the large frame size. Fig. 8 shows the fraction of duplicated chunks among 
received chunks, which indicates that under Frame, 18 chunks among received 10000 chunks 
are duplicated. As a reason for the redundancy is the leave of cloud peers which frequently 
occurs in Proactive and Frame. More specifically, when a cloud peer leaves, its child who 
has received most recent chunks from the cloud peer might connect to a new parent which did 
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not receive the latest chunks yet. In such a case, the new parent forwards duplicated chunks to 
the new child. The large frame size in Frame increases the redundancy as explained in section 
5.3.  

 
Fig. 6. Time transition of the fetch rate from the CCDN. 

 

 
Fig. 7. Total amount of data fetched from the CCDN. 

 
To clarify the difference of Proactive and Frame in more detail, we separately evaluate 

data fetches conducted by cloud peers and the other peers. Fig. 9 summarizes the result. The 
result shows that the amount of fetch conducted by cloud peers is almost the same, i.e., 3.87 
GB for Proactive and 3.73 GB for Frame, but  the amount of fetches conducted by the other 
peers to mitigate churn differs, i.e., it is 2.98 GB for Proactive which is apparently less than 
3.84 GB for Frame. Such a difference is due to: 1) the redundancy of Frame as was observed 
in Fig. 8 and 2) the difference of average hop-count from root to the peers which is 3.07 in 
Proactive and 5.43 in Frame (recall that Frame invests less cloud peers than Proactive). 

6.3 Number of Requests Handled by the Cloud 
The number of requests handled by the cloud storage service is shown in Fig. 10. The 
proposed schemes issue more requests than Baseline since they exploit the storage service to 
realize a quick match-making between orphaned peers and free capacity peers. The difference 
of three proposed schemes is mainly due to the difference of average hop-count, since shorter 
hop-count implies that fewer peers are affected by churn. In fact, the result shows that a 
scheme with a smaller average hop-count issues fewer requests; e.g., Proactive issues the 
least and Frame issues the second least. 
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Fig. 8. Fraction of redundant chunk. 

 

 
Fig. 9. The amount of fetches conducted by cloud peers and the other peers. 

 

 
Fig. 10. The number of requests handled by the cloud storage service. 

 
The number of requests handled by the CCDN is shown in Fig. 11. The difference among 

Baseline, Orphan and Proactive is comparable to the difference of the amount of fetched 
data observed in Fig. 7. However, the number of requests issued in Frame is much smaller 
than the others (e.g., it saves 42.5% of requests compared with Proactive), which is 
apparently because of the effect of introducing frames. 
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Fig. 11. The number of requests handled by the CCDN. 

 
Table 2. AWS prices in Tokyo region  

 Requests   Price 
To the storage service  $ 0.0047  per 1000 requests 

To the CCDN $ 0.0090  per 10000 requests 
Data transfer out of the CCDN Price 

If <10 TB per month $ 0.14  per GB 

6.4 Total Monetary Cost of the Cloud-Assistance 
In this subsection, we evaluate the monetary cost of the cloud-assistance for each scheme. 
Table 2 shows the AWS price in Tokyo region [31-32]3, which indicates that: 1) requests to 
the cloud storage service take $ 4.7 × 10−6 per request, 2) requests to the CCDN take 
$ 0.9 × 10−6 per request, and 3) data fetch takes $ 0.14  per GB. Let 𝑅𝑅𝑠𝑠 be the number of 
requests handled by the storage service, 𝑅𝑅𝑐𝑐 the number of requests handled by the CCDN, and 
𝐷𝐷 the amount of fetched data in GB. Then the total monetary cost of a scheme is calculated as 
 
                 𝐶𝐶($) = 4.7 × 10−6 × 𝑅𝑅𝑠𝑠 +  0.9 × 10−6 ×  𝑅𝑅𝑐𝑐 +  0.14 × 𝐷𝐷                         (2) 
 

By substituting values obtained in previous subsections, we have the monetary cost of each 
scheme as is shown in Fig. 12. From the figure, we can make the following observations: 

 
Fig. 12. Total cost ($). 

3 Billing model and prices may change over time.  
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1) Orphan saves the cost of Baseline by 33.3%. This implies that the benefit of quick 
recovery is larger than the cost of requests handled by the cloud storage service. 

2) Proactive saves the cost of Baseline by 39.5%. The improvement of Proactive is because 
of the proactive fetch conducted by the cloud peers and the fewer orphaned peers due 
to the short average hop-count. 

3) Frame saves the cost of Baseline by 46%. This is due to the reduction of the number 
of requests handled by the CCDN. 

6.5 Playback Delay & Delivery Ratio 
Finally, we evaluate the quality of live stream delivered to the peers in terms of the average 
delivery ratio and the average playback delay. The delivery ratio is the ratio of chunks received 
by the playback deadline among chunks transmitted by the server. The playback delay is the 
delay between the time when a chunk is sent out from the server and the time when it is played 
by the peer. The maximum playback delay is the time by which the chunk is played by all 
peers. Values of these metrics are sampled every 10 seconds and averaged at the end of each 
simulation run. 

Table 3 summarizes the results. The results indicate that all schemes attain a sufficiently 
high delivery ratio 0.999 and a short maximum playback delay of 13.5 seconds. This is due to 
the behavior of peers such that they fetch chunks from the cloud when the time before 
playback becomes 2 seconds. Note that 13.5 seconds is shorter than the buffering time which 
is set to 15 seconds in the simulation. As for the average playback delay, we can make the 
following observations. At first, Proactive attains an average delay of 5.45 seconds thanks to 
the short depth of the delivery tree. However, Frame is worse than Proactive by 1.37 seconds 
and Orphan is worse than Frame by 1.47 seconds. The badness of Orphan is due to the 
behavior of peers so that they fetch chunks “after” detecting that the time before playback is 2 
seconds. Frame’s badness is due to the longer depth of the delivery tree and the longer time 
taken by cloud peers to download a frame before starting the forward of the chunks to the 
children. Fig. 13 shows the time transition of the average delay of each scheme. 
 

Table 3. Quality metrics of the live stream in each scheme. 
 Baseline Orphan Proactive Frame 

Avg. delivery ratio 0.999 0.999 0.999 0.999 
Max. playback delay [sec.]  13.561 13.548 13.377 13.447 
Avg. playback delay [sec.]  9.944 8.297 5.457 6.826 

7. Conclusion  
This paper proposes three techniques to reduce the cost of cloud-assistance in hybrid P2P live 
streaming. At first, we exploit the cloud storage service to speed up the match-making between 
orphaned peers and peers with a free upload capacity. Then, we invest a set of cloud peers to 
proactively fetch chunks from the cloud, where the number of cloud peers is dynamically 
adjusted based on the estimated shortage of the P2P. Finally, to reduce the number of requests 
handled by the cloud, we introduce the notion of frame to allow cloud peers to fetch a 
collection of chunks using a single request. The simulation results indicate that the resulting 
scheme reduces the monetary cost of conventional cloud-assisted P2P by about 46% while 
guaranteeing a high streaming quality.  
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As a future work, we need to refine the estimation of P2P shortage providing a method to 
dynamically set its parameters. 

 
Fig. 13. Time transition of the average playback delay. 
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