DOI QR코드

DOI QR Code

High-performance asymmetric supercapacitors based on polyoxometalate-graphene nanohybrids

  • Yang, MinHo (Department of Nano Bio Research, National NanoFab Center (NNFC)) ;
  • Choi, Bong Gill (Department of Chemical Engineering, Kangwon National University)
  • Received : 2016.01.05
  • Accepted : 2016.02.25
  • Published : 2016.04.30

Abstract

Keywords

References

  1. Armaroli N, Balzani V. Towards electricity-powered world. Energy Environ Sci, 4, 3193 (2011). http://dx.doi.org/10.1039/c1ee01249e.
  2. Achilleos DS, Hatton TA. Surface design and engineering of hierarchical hybrid nanostructures for asymmetric supercapacitors with improved electrochemical performance. J Colloid Interface Sci, 447, 282 (2015). http://dx.doi.org/10.1016/j.jcis.2014.12.080.
  3. Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater, 7, 845 (2008). http://dx.doi.org/10.1038/nmat2297.
  4. Lu Q, Chen JG, Xiao JQ. Nanostructured electrodes for high-performance pseudocapacitors. Angew Chem Int Ed, 52, 1882 (2013). http://dx.doi.org/10.1002/anie.201203201.
  5. Motori A, Sandrolini F, Davolio G. Electrical properties of nickel hydroxide for alkaline cell systems. J Power Sources, 48, 361 (1994). http://dx.doi.org/10.1016/0378-7753(94)80032-4.
  6. Lang XY, Fu HY, Hou C, Han GF, Yang P, Liu YB, Jiang Q. Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors. Nat Commun, 4, 2169 (2013). http://dx.doi.org/10.1038/ncomms3169.
  7. Wang G, Liu H, Horvat J, Wang B, Qiao S, Park J, Ahn H. Highly ordered mesoporous cobalt oxide nanostructures: synthesis, characterisation, magnetic properties, and applications for electrochemical energy devices. Chem Eur J, 16, 11020 (2010). http://dx.doi.org/10.1002/chem.201000562.
  8. Liu J, Jiang J, Cheng C, Li H, Zhang J, Gong H, Fan HJ. Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. Adv Mater, 23, 2076 (2011). http://dx.doi.org/10.1002/adma.201100058.
  9. Xie J, Sun X, Zhang N, Xu K, Zhou M, Xie Y. Layer-by-layer β-Ni(OH)2/graphene nanohybrids for ultraflexible all-solid-state thin-film supercapacitors with high electrochemical performance. Nano Energy, 2, 65 (2013). http://dx.doi.org/10.1016/j.nanoen.2012.07.016.
  10. Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci, 7, 1597 (2014). http://dx.doi.org/ 10.1039/c3ee44164d.
  11. Wang F, Xiao S, Hou Y, Hu C, Liu L, Wu Y. Electrode materials for aqueous asymmetric supercapacitors. RSC Adv, 3, 13059 (2013). http://dx.doi.org/10.1039/c3ra23466e.
  12. Khomenko V, Raymundo-Piñero E, Béguin F. Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium. J Power Sources, 153, 183 (2006). http://dx.doi.org/10.1016/j.jpowsour.2005.03.210.
  13. Sadakane M, Steckhan E. Electrochemical properties of polyoxometalates as electrocatalysts. Chem Rev, 98, 219 (1998). http://dx.doi.org/10.1021/cr960403a.
  14. López X, Carbó JJ, Bo C, Poblet JM. Structure, properties and reactivity of polyoxometalates: a theoretical perspective. Chem Soc Rev, 41, 7537 (2012). http://dx.doi.org/10.1039/c2cs35168d.
  15. Park S, Lian K, Gogotsi Y. Pseudocapacitive behavior of carbon nanoparticles modified by phosphomolybdic acid. J Electrochem Soc, 156, A921 (2009). http://dx.doi.org/10.1149/1.3223964.
  16. Kim H, Jung JC, Song IK. Chemical immobilization of heteropolyacid catalyst on inorganic mesoporous material for use as an oxidation catalyst. Catal Surv Asia, 11, 114 (2007). http://dx.doi.org/10.1007/s10563-007-9025-1.
  17. Ma D, Liang L, Chen W, Liu H, Song YF. Covalently tethered polyoxometalate-pyrene hybrids for noncovalent sidewall functionalization of single-walled carbon nanotubes as high-performance anode material. Adv Funct Mater, 23, 6100 (2013). http://dx.doi.org/10.1002/adfm.201301624.
  18. Giusti A, Charron G, Mazerat S, Compain JD, Mialane P, Dolbecq A, Rivière E, Wernsdorfer W, Biboum RN, Keita B, Nadjo L, Filoramo A, Bourgoin JP, Mallah T. Magnetic bistability of individual single-molecule magnets grafted on single-wall carbon nanotubes. Angew Chem Int Ed, 48, 4949 (2009). http://dx.doi.org/10.1002/anie.200901806.
  19. Kawasaki N, Wang H, Nakanishi R, Hamanaka S, Kitaura R, Shinohara H, Yokoyama T, Yoshikawa H, Awaga K. Nanohybridization of polyoxometalate clusters and single-wall carbon nanotubes: applications in molecular cluster batteries. Angew Chem Int Ed, 50, 3471 (2011). http://dx.doi.org/10.1002/anie.201007264.
  20. Akter T, Hu K, Lian K. Investigations of multilayer polyoxometalates-modified carbon nanotubes for electrochemical capacitors. Electrochim Acta, 56, 4966 (2011). http://dx.doi.org/10.1016/j.electacta.2011.03.127.
  21. Kume K, Kawasaki N, Wang H, Yamada T, Yoshikawa H, Awaga K. Enhanced capacitor effects in polyoxometalate/graphene nanohybrid materials: a synergetic approach to high performance energy storage. J Mater Chem A, 2, 3801 (2014). http://dx.doi.org/10.1039/c3ta14569g.
  22. Kim Y, Shanmugam S. Polyoxometalate-reduced graphene oxide hybrid catalyst: synthesis, structure, and electrochemical properties. ACS Appl Mater Interfaces, 5, 12197 (2013). http://dx.doi.org/10.1021/am4043245.
  23. Suárez-Guevara J, Ruiz V, Gómez-Romero P. Stable graphene-polyoxometalate nanomaterials for application in hybrid supercapacitors. Phys Chem Chem Phys, 16, 20411 (2014). http://dx.doi.org/10.1039/c4cp03321c.
  24. Yang M, Choi BG, Jung SC, Han YK, Huh YS, Lee SB. Polyoxometalate-coupled graphene via polymeric ionic liquid linker for supercapacitors. Adv Funct Mater, 24, 7301 (2014). http://dx.doi.org/10.1002/adfm.201401798.
  25. Zhang Y, Shen Y, Yuan J, Han D, Wang Z, Zhang Q, Niu L. Design and synthesis of multifunctional materials based on an ionic-liquid backbone. Angew Chem Int Ed, 45, 5867 (2006). http://dx.doi.org/10.1002/anie.200600120.
  26. Rubinson JF, Kayinamura YP. Charge transport in conducting polymers: insights from impedance spectroscopy. Chem Soc Rev, 38, 3339 (2009). http://dx.doi.org/10.1039/b904083h.
  27. Portet C, Lillo-Ródenas MÁ, Linares-Solano A, Gogotsi, Y. Capacitance of KOH activated carbide-derived carbons. Phys Chem Chem Phys, 11, 4943 (2009). http://dx.doi.org/10.1039/B816514A.
  28. Sheng K, Sun Y, Li C, Yuan W, Shi G. Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering. Sci Rep, 2, 247 (2012). http://dx.doi.org/10.1038/srep00247.

Cited by

  1. Electric Field Enhanced Synthesis of Copper Hydroxide Nanostructures for Supercapacitor Application vol.12, pp.01, 2017, https://doi.org/10.1142/S1793292017500102
  2. Electrochemistry of Polyoxometalates: From Fundamental Aspects to Applications vol.5, pp.6, 2018, https://doi.org/10.1002/celc.201701170