DOI QR코드

DOI QR Code

Investigation of carbon dioxide adsorption by nitrogen-doped carbons synthesized from cubic MCM-48 mesoporous silica

  • Heo, Young-Jung (Department of Chemistry, Inha University) ;
  • T.Le, Minh-Uyen (Department of Chemistry, Inha University) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University)
  • Received : 2015.09.07
  • Accepted : 2016.03.17
  • Published : 2016.04.30

Abstract

Keywords

References

  1. D'Alessandro DM, Smit B, Long JR. Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed, 49, 6058 (2010). http://dx.doi.org/10.1002/anie.201000431.
  2. Armatas GS, Kanatzidis MG. Mesostructured germanium with cubic pore symmetry. Nature, 441, 1122 (2006). http://dx.doi.org/10.1038/nature04833.
  3. Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I. Progress in carbon dioxide separation and capture: a review. J Environ Sci, 20, 14 (2008). http://dx.doi.org/10.1016/S1001-0742(08)60002-9.
  4. Mishra AK, Ramaprabhu S. Polyaniline/multiwalled carbon nanotubes nanocomposite-an excellent reversible CO2 capture candidate. RSC Adv, 2, 1746 (2012). http://dx.doi.org/10.1039/C1RA00958C.
  5. Fracaroli AM, Furukawa H, Suzuki M, Dodd M, Okajima S, Gándara F, Reimer JA, Yaghi OM. Metal-organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water. J Am Chem Soc, 136, 8863 (2014). http://dx.doi.org/10.1021/ja503296c.
  6. Liu J, Thallapally PK, McGrail BP, Brown DR, Liu J. Progress in adsorption-based CO2 capture by metal-organic frameworks. Chem Soc Rev, 41, 2308 (2012). http://dx.doi.org/10.1039/C1CS15221A.
  7. Xie LH, Suh MP. High CO2-capture ability of a porous organic polymer bifunctionalized with carboxy and triazole groups. Chem Eur J, 19, 11590 (2013). http://dx.doi.org/10.1002/chem.201301822.
  8. Patel HA, Je SH, Park J, Chen DP, Jung Y, Yavuz CT, Coskun A. Unprecedented high-temperature CO2 selectivity in N2-phobic nanoporous covalent organic polymers. Nat Commun, 4, 1357 (2013). http://dx.doi.org/10.1038/ncomms2359.
  9. Meng LY, Park SJ. Effect of heat treatment on CO2 adsorption of KOH-activated graphite nanofibers. J Colloid Interface Sci, 352, 498 (2010). http://dx.doi.org/10.1016/j.jcis.2010.08.048.
  10. Kim BJ, Lee YS, Park SJ. Novel porous carbons synthesized from polymeric precursors for hydrogen storage. Int J Hydrogen Energy, 33, 2254 (2008). http://dx.doi.org/10.1016/j.ijhydene.2008.02.019.
  11. Le MUT, Lee SY, Park SJ. Preparation of characterization of PEI loaded MCM-41 for CO2 capture. Int J Hydrogen Energy, 39, 12340 (2014). http://dx.doi.org/10.1016/j.ijhydene.2014.04.112.
  12. Bae TH, Hudson MR, Mason JA, Queen WL, Dutton JJ, Sumida K, Micklash KJ, Kaye SS, Brown CM, Long JR. Evaluation of cation-exchanged zeolite adsorbents for post-combustion carbon dioxide capture. Energy Environ Sci, 6, 128 (2013). http://dx.doi.org/10.1039/C2EE23337A.
  13. Park SJ, Kim KD. Adsorption behavior of CO2 and NH3 on chemically surface-treated activated carbons. J Colloid Interface Sci, 212, 186 (1999). http://dx.doi.org/ 10.1006/jcis.1998.6058.
  14. Saleh M, Tiwari JN, Kemp KC, Yousuf M, Kim KS. Highly selective and stable carbon dioxide uptake in polyindole-derived microporous carbon materials. Environ Sci Technol, 47, 5467 (2013). http://dx.doi.org/10.1021/es3052922.
  15. Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials. Adv Mater, 18, 2073 (2006). http://dx.doi.org/10.1002/adma.200501576.
  16. Park SJ, Kim BJ, Lee YS, Cho MJ. Influence of copper electroplating on high pressure hydrogen-storage behaviors of activated carbon fibers. Int J Hydrogen Energy, 33, 1706 (2008). http://dx.doi.org/10.1016/j.ijhydene.2008.01.011.
  17. Heo YJ, Park SJ. Synthesis of activated carbon derived from rice husks for improving hydrogen storage capacity. J Ind Eng Chem, 31, 330 (2015). http://dx.doi.org/10.1016/j.jiec.2015.07.006.
  18. Park SJ, Kim KD. Influence of activation temperature on adsorption characteristics of activated carbon fiber composites. Carbon, 39, 1741 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00305-5.
  19. Chumphongphan S, Filsø U, Paskevicius M, Sheppard DA, Jensen TR, Buckley CE. Nanoconfinement degradation in NaAlH4/CMK-1. Int J Hydrogen Energy, 39, 11103 (2014). http://dx.doi.org/10.1016/j.ijhydene.2014.05.087.
  20. Wang Y, Wang X, Antonietti M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew Chem Int Ed, 51, 68 (2012). http://dx.doi.org/10.1002/anie.201101182.
  21. Wei J, Zhou D, Sun Z, Deng Y, Xia Y, Zhao D. A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors. Adv Funct Mater, 23, 2322 (2013). http://dx.doi.org/10.1002/adfm.201202764.
  22. Lysenko ND, Shvets AV, Yaremov PS, Il'in VG. Effect of the conditions of the matrix carbonization of sucrose on the structure and adsorption properties of mesoporous carbon materials. Theor Exp Chem, 44, 374 (2008). http://dx.doi.org/10.1007/s11237-009-9055-z.
  23. Lee SY, Yoo HM, Park SW, Park SH, Oh YS, Rhee KY, Park SJ. Preparation and characterization of pitch-based nanoporous carbons for improving CO2 capture. J Solid State Chem, 215, 201 (2014). http://dx.doi.org/10.1016/j.jssc.2014.03.038.
  24. Yoon SB, Kim JY, Yu JS. Synthesis of highly ordered nanoporous carbon molecular sieves from silylated MCM-48 using divinylbenzene as precursor. Chem Commun, 6, 559 (2001). http://dx.doi.org/10.1039/B009691L.
  25. Yang H, Zhao D. Synthesis of replica mesostructures by the nanocasting strategy. J Mater Chem, 15, 1217 (2005). http://dx.doi.org/10.1039/B414402C.
  26. Ryoo R, Joo SH, Kruk M, Jaroniec M. Ordered mesoporous carbons. Adv Mater, 13, 677 (2001). http://dx.doi.org/10.1002/1521-4095(200105)13:9<677::AID-ADMA677> 3.0.CO;2-C.
  27. Kruk M, Jaroniec M, Ryoo R, Joo SH. Characterization of ordered mesoporous carbons synthesized using MCM-48 silicas as templates. J Phys Chem B, 104, 7960 (2000). http://dx.doi.org/10.1021/jp000861u.
  28. Jiao F, Yen H, Hutchings GS, Yonemoto B, Lu Q, Kleitz F. Synthesis, structural characterization, and electrochemical performance of nanocast mesoporous Cu-/Fe-based oxides. J Mater Chem A, 2, 3065 (2014). http://dx.doi.org/10.1039/C3TA14111J.
  29. Carlsson A, Kaneda M, Sakamoto Y, Terasaki O, Ryoo R, Joo SH. The structure of MCM-48 determined by electron crystallography. J Electron Microsc (Tokyo), 48, 795 (1999). http://dx.doi.org/10.1093/oxfordjournals.jmicro.a023751.
  30. Heo YJ, Park SJ. A role of steam activation on CO2 capture and separation of narrow microporous carbons produced from cellulose fibers. Energy, 91, 142 (2015). http://dx.doi.org/10.1016/j.energy.2015.08.033.
  31. Lu AH, Schüth F. Nanocasting: a versatile strategy for creating nanostructured porous materials. Adv Mater, 18, 1793 (2006). http://dx.doi.org/10.1002/adma.200600148.