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The disease known as cerebral cavernous malformations most-
ly occurs in the central nervous system, and their typical histo-
logical presentations are multiple lumen formation and vas-
cular leakage at the brain capillary level, resulting in disruption 
of the blood-brain barrier. These abnormalities result in severe 
neurological symptoms such as seizures, focal neurological 
deficits and hemorrhagic strokes. CCM research has identified 
‘loss of function’ mutations of three ccm genes responsible for 
the disease and also complex regulation of multiple signaling 
pathways including the WNT/-catenin pathway, TGF- and 
Notch signaling by the ccm genes. Although CCM research is a 
relatively new and small scientific field, as CCM research has 
the potential to regulate systemic blood vessel permeability 
and angiogenesis including that of the blood-brain barrier, this 
field is growing rapidly. In this review, I will provide a brief 
overview of CCM pathogenesis and function of ccm genes 
based on recent progress in CCM research. [BMB Reports 
2016; 49(5): 255-262]

INTRODUCTION

The vascular malformations characterizing the disease known 
as cerebral cavernous malformations (CCMs; OMIM #116860, 
603284, 603285) mostly occur in the central nervous system 
(CNS) and their typical histological presentations are single or 
multiple lumen formation and vascular leakage at the brain ca-
pillary level, aka disruption of the blood- brain barrier (BBB) (1). 
These abnormalities result in severe neurological symptoms 
such as hemorrhagic stroke (30-40%), seizures (40-70%), head-
ache (10-30%) and focal neurological symptoms (35-50%) (2). 
Together with arteriovenous malformation (AVM), CCM is a 
major cerebral vascular disease entity, albeit showing milder 
phenotypes than AVM (around 50-80% of CCM cases are 
asymptomatic) (3, 4). Prevalence of both sporadic and familial 

type CCMs is estimated to be 0.1-0.5% in the general pop-
ulation and the proportion of familial cases in total CCM cases 
has been estimated to be as high as 50% in Hispanic-American 
patients and close to 10-40% in other populations (5, 6).

So far, CCM research has been a small scientific field. 
However, as CCM research has a good potential to regulate 
systemic blood vessel permeability and angiogenesis (7-9), im-
portantly those of the BBB and possibly tumor vasculature, the 
field is now rapidly growing (Fig. 1). Indeed, both in vivo and 
in vitro studies revealed that perturbation of the WNT/-cat-
enin pathway (10, 11), TGF-/BMP (10, 12, 13) and Notch sig-
naling (14), cytoskeletal regulation (8, 15) and anti-oxidant sig-
naling (16-18) are responsible for CCM pathogenesis and sev-
eral proteomic studies elegantly showed that all three ccm 
genes encode CCM proteins comprising distinct macro-
molecular complexes, implying complex regulation of multi-
ple signaling pathways due to various interactions with many 
signaling molecules by each CCM protein (19-21). As in-
dividual proteins comprising the distinct macromolecular 
CCM complexes are still not fully characterized, our under-
standing of the composition of the CCM macromolecular com-
plexes and associated functional networks is still in its infancy. 
The important unresolved questions in this field are as follows: 
1) Why are the phenotypes almost exclusively seen in the 
CNS, although all the three ccm genes are ubiquitously ex-
pressed? 2) How do ccm genes act in formation and main-
tenance of neurovascular units? 3) What are the functions of 
ccm genes in non-endothelial cells and extra-CNS endothelial 
cells? and 4) How to identify the genetic or environmental 
modifiers that will address incomplete clinical penetrance of 
CCMs? 

MUTATIONS OF CCM GENES 

ccm1, ccm2 and ccm3 genes were identified in 1999 (22), 
2003 (23) and 2005 (24), respectively. The three genes: ccm1 
(Krit1; Krev interaction trapped 1), ccm2 (MGC4607, Malca-
vernin) and ccm3 (PDCD10), respectively, which are located 
on chromosomes 7q21.2, 7p13 and 3q25.2-q27 (25, 26), are 
known to be responsible for familial cases of CCMs and for 
more than half of the sporadic cases of CCM with multiple le-
sions (27, 28). Relative frequency of mutations of ccm genes in 
familial cases is about 53-65%, 15-19% and 10-22% for ccm1, 
ccm2 and ccm3, respectively (29-31) and familial CCM is an 
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Fig. 1. Annual publication records of 
CCM from 1995 to 2015. PubMed 
search using keywords ‘Krit1 or ccm1 
or ccm2 or ccm3 or cerebral cavernous 
malformation’ yielded 440 publications.

autosomal dominant disease with incomplete clinical and ra-
diological penetrance (1, 3, 32). The existence of additional 
CCM loci has been suggested as 5-15% of familial cases can-
not be explained by the three known ccm genes (31, 33). ccm 
mutations are also found in sporadic cases (33, 34) and spora-
dic cases with a single lesion, and not multiple CCM lesions 
appear to harbor far less ccm mutations (35, 36). Of note, the 
phenotypes of CCM3 patients or animal models are more se-
vere than those of CCM1 or CCM2 patients or animal models 
(37-39).

So far, more than 100 distinct CCM1 mutations, 30 CCM2 
mutations and 20 CCM3 mutations have been identified and 
most of the ccm mutations lead to either a premature termi-
nation codon or large deletions, strongly suggesting that most 
of the ccm mutations are ‘loss of function’ mutations (2, 28).

MECHANISMS OF CCM PATHOGENESIS

It is becoming important to understand how CCM1, CCM2 
and CCM3 function, what roles they play in signal trans-
duction, and where do their signaling pathways overlap. The 
strong interaction between CCM1 and CCM2 appears to be 
important for the regulation of CCM signaling (40, 41) and evi-
dences imply that the two CCM proteins participate in com-
mon signaling pathways (38). CCM3 appears to act in different 
signaling pathways (37-39, 42). Pathogenesis of CCM follows 
the Knudsonian two-hit mechanism, in which loss of one allele 
due to a germline mutation of one of the three known CCM 

genes in an affected cell (first hit) is accompanied with somatic 
mutation in the other (second hit) (27, 43-46). Increased vas-
cular permeability was observed both in haplo-insufficient 
CCM1(+/−) and CCM2 (+/−) mouse endothelial cells in vi-
tro and in lung and liver tissues of CCM1(+/−) and CCM2 
(+/−) animals in vivo (8), indicating the asymptomatic ex-
tra-CNS manifestations. Because only about 30% of humans 
with CCM lesions will eventually develop clinical symptoms, 
the existence of a modifier is suggested for the incomplete 
clinical penetrance.

Activation of RhoA and its effector, Rho kinase (ROCK), in-
duces stress fiber formation, resultant decreased stability of ad-
herens junction and abnormal extracellular matrix (ECM) re-
modeling, and increases endothelial permeability (47). Ablation 
of ccm1, ccm2 or ccm3 in endothelial cells has been shown to 
increase Rho activation (48). CCM1 and CCM2 loss resulted in 
destabilization of another CCM1 interacting protein, integrin 
cytoplasmic domain-associated protein-1 (ICAP-1), which in-
creased 1 integrin activation and led to increased RhoA-de-
pendent contractility (49, 50) and commonly activated p38, 
Akt, and ERK1/2 in endothelial cells (42). Ras-related protein 
(Rap1)-dependent association of CCM1 with vascular endothe-
lial cadherin at adherens junctions (AJs), with CCM1 depend-
ent cortical cytoskeletal remodeling leads to EC barrier en-
hancement (7, 8, 50). Aberrant Rho activation was also found 
in sporadic CCM patients (8, 43). In the early stage of CCM re-
search, the reversal of Rho activation due to inhibition of 
ROCK in ccm-ablated endothelial cells suggested that Rho ac-
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tivation is a major mechanism in CCM pathogenesis (48). 
However, further studies revealed that Rho/ROCK signaling is 
not a unique target for CCM disease. 

Recent studies elegantly demonstrated endothelial-mesen-
chymal transition (EndMT) in endothelial cells lining CCMs in 
tamoxifen-inducible CCM1 loss of function mice (12, 13). 
EndMT has been previously implicated in cardiac fibrosis and 
cancer progression and it leads to a modification of the endo-
thelial cell phenotype, resulting in a loss of cellular junctions, 
acquisition of migratory properties, loss of endothelial-specific 
markers, and gain of mesenchymal markers. EndMT may occur 
as a result of upregulation of endogenous bone morphogenetic 
protein 6 (BMP6) and activation of the transforming growth 
factor (TGF)- and bone morphogenetic protein (BMP) signal-
ing pathways. CCM1 is also a Notch activator (14) and loss of 
CCM1, ICAP1 and CCM3 has been shown to cause down-
regulation of Notch signaling, leading to increased angiogenesis 
(51-53). In line with these findings, overexpression of CCM1 
caused Notch activation and decreased sprouting angiogenesis 
after stimulation with VEGF (51). Studies have shown that loss 
of CCM1-mediated Notch inhibition and Kruppel-like factor 4 
(KLF4) induction result in upregulation of BMP6 and resultant 
EndMT (13, 51). Autophagy appears to be another important 
mechanism of CCM pathogenesis because ablation of ccm1, 
ccm2 and ccm3 commonly causes mTOR-ULK1 pathway 
mediated suppression of autophagy and resultant EndMT (54). 
Ablation of ccm1 causes increased nuclear -catenin local-
ization and WNT signaling (15, 48) and Wnt-independent 
stimulation of -catenin transcriptional activity precedes 
TGF/BMP signaling for EndMT (10). Another study revealed 
that an increase in nuclear -catenin and VEGF signaling is ob-
served when ccm1 and ccm3, but not ccm2, are ablated (53, 
55). Involvement of CCM proteins in VEGF and Notch signal-
ing suggests that the paracrine effect modulated by CCM may 
also affect non-endothelial cells in the lesion. Indeed, recent 
reports suggested that ccm3 ablation induced VEGF secretion 
activated Erk1/2 and AKT in endothelial cells (42, 56), and in a 
GBM xenograft mouse model, endothelial ccm3 ablation in-
creased tumor progression due to increased proliferation of 
GBM cells, which indicate autonomous and non-autonomous 
roles of CCM proteins in tumor progression (56). Also, another 
report, which suggested that ccm1 knockdown in endothelial 
cells deregulated Notch signaling in adjacent pericytes, sup-
ports the notion (14).

Combinational effects and genetic modifiers may explain ra-
diological and clinical incomplete penetrance of CCM. 
Combinational effects due to reduced expression or disturbed 
function of other proteins in CCM signaling have been shown 
in zebra fish (57), and it has been suggested that genetic sus-
ceptibility is related to oxidative stress (3, 58). CCM1 has been 
shown to modulate the expression level of the antioxidant pro-
tein SOD2, indicating a potential contribution of the oxidant 
pathway to CCM pathogenesis (18, 59). A recent report 
showed that inducible knockout of ccm2 gene after vessel de-

velopment did not develop CCM lesions in a mouse model, 
and this suggests that the time window for genetic changes 
and also possibly, resultant specific changes in microvascular 
environment may be essential for the CCM phenotypes (60).

Various animal model systems including zebra fish, drosophila 
and mouse models are available for CCM studies (8, 38, 60-65). 
In brief, CCM1(＋/−)Msh2(−/−) (61) and CCM1(＋/−)p53(−/−) 
(66) mice were used to prove the Knudsonian two-hit mechanism. 
The CCM3(＋/−) mouse model showed different pathogenetic 
mechanisms underlying CCM lesion genesis and echoing differ-
ences in severity between CCM1 or CCM2 and CCM3 disease 
(42, 67). Most significant phenotypes are observed due to ccm3 
mutation (30). Many animal studies have been performed to iden-
tify the cellular component of the BBB; endothelial cells, neuro-
glial cells and smooth muscle cells, which is responsible for CCM 
pathogenesis. Inducible knockout experiments of ccm1, ccm2 
and ccm3 genes showed that perturbed homeostasis of endothe-
lial cells appears to be the most important for CCM phenotypes, 
albeit mice with Emx1-Cre, Gfap-Cre and Nestin-Cre induced 
neuronal cell specific knockout of ccm3 showed considerable 
CCM phenotypes. 

FORMATION OF A HETEROTRIMERIC 
CCM1-CCM2-CCM3 ‘CCM COMPLEX SIGNALING 
PLATFORM’ 

CCM proteins directly interact with each another to form a 
CCM1-CCM2-CCM3 based signaling platform (68, 69) with in-
teracting proteins rather distinct for each CCM protein (19-21, 
70-72). Interaction between CCM2 and CCM3 is necessary for 
stability of the two proteins (73) and CCM2 dependent stabili-
zation of CCM1 has also been reported (49). CCM2 appears to 
act as the central hub in the formation of CCM complex by us-
ing its PTB domain and a conserved motif C-terminal of the 
PTB domain to interact with the 2nd and 3rd NPxY/F motifs of 
CCM1 and the focal adhesion targeting homology (FAT-H) do-
main of CCM3, respectively (74). A meticulous phosphomap-
ping study has revealed that CCM2 has fourteen Ser/Thr phos-
phorylation sites with three sites on its PTB domain, suggesting 
that phosphorylation events may potentially influence for-
mation of the CCM signaling complex (Fig. 2) (21). Although 
these three CCM proteins together can form the CCM signaling 
platform, the function of CCM3 appears to be somewhat differ-
ent from that of the other CCM proteins. Proteomic studies 
showed that the interaction of CCM3 with members of the 
GCKIII family is more frequently detected than that of CCM3 
with CCM2 (39, 75). In summary, the interaction between 
CCM1 and CCM2 appears to be intrinsic to CCM complex 
function; however, the role of CCM3 in the CCM complex re-
mains to be determined. Precise identification of proteins that 
interact with all three CCM proteins or either of the three CCM 
proteins is necessary to acquire a better understanding of the 
CCM complex signaling platforms. 

CCM1 is a 736 amino acid protein, which was originally de-
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Fig. 2. Representative protein interaction
and phosphorylation sites in CCM 
proteins. Number indicates the location 
of specific amino acid residue from 
N-terminus. Size of red stars indicates 
relative abundance of phosphorylation 
on serine (S), threonine (T) or tyrosine 
(Y) residues. Based on (18).

scribed to contain a c-terminal FERM (band 4.1, ezrin, radixin, 
moesin) domain that interacts with the small GTPase Krev-1 
(Rap1) and Nd1-L (59), three PTB binding NPxY/F motifs and 
an ankyrin repeat domain (ARD) N-terminal to the FERM do-
main consisting of 4 ankyrin repeats. NPxY/F motifs (192NPAY, 
231NPLF, 250NPYF) are important for the protein-protein inter-
actions including intermolecular interactions with CCM2, 
Heg1 and ICAP1, and intramolecular CCM1 conformational 
changes and resultant functional outputs (75). CCM1 inter-
action with microtubules determines subcellular localization 
of CCM1 in the cytoplasm (76-78). After release from micro-
tubules, CCM1 seems to localize to cell membranes driven 
predominantly by interaction with Rap1 (78, 79). The FERM 
domain of CCM1 is comprised of F1, F2 and F3 lobes. F1 and 
F2 lobes interact with Switch I and II regions of Rap1, and F1 
and F3 lobes interact with the c-terminal cytoplasmic region of 
Heg1 (80, 81). 231NPLF and 250NPYF sequences, the second 
and third of the three CCM1 NPX (Y/F) motifs, are known to 
interact with the PTB domain of CCM2, and a recent study 
showed that the third motif is crucial for the interaction with a 
single binding site on the CCM2 PTB domain (41). The 2nd 
NPX (Y/F) motif in CCM1 interacts with the FERM domain of 
SNX17 (82).

CCM2, a 444 amino acid protein, has a N-terminal PTB do-
main, LD-like motif and C-terminal harmonin homology do-
main (HHD) (73). The -helical LD like motif within CCM2 
binds the highly conserved HP1 pocket of the CCM3 FAT-H 
domain (73). CCM2 interacts with MEKK3 (64), CCM1 and 
CCM3 (69), and CCM2 either mediates the activation of 

MEKK3 signaling in response to osmotic stress or negatively 
regulates MEKK3 signaling. Depletion of CCM2 phosphor-
ylates MEKK3 and ERK5 and activates the transcriptional pro-
gram downstream of MEKK3 (64). The CCM2-MEKK3 inter-
action is also known to be partially responsible for Rho-ROCK 
signaling (83). The PTB domain of CCM2 interacts with Smurf1, 
a ubiquitin ligase (E3), and the CCM2-Smurf1 interaction was 
shown to localize Smurf1 for degradation of RhoA (84).

The best identified role of CCM3 would be as a bridging fac-
tor within the striatin-interacting phosphatase and kinase 
(STRIPAK) complex that is essential for cell polarity and migra-
tion (73). A recent report, which showed that the CCM2-CCM3 
interaction is required for endothelial cell network formation 
and that CCM3 in the absence of CCM2 is sufficient for endo-
thelial cell growth, indicates a complex function of CCM3, 
both dependent and independent of CCM2 (73). CCM3 is a 
212 amino acid protein with an N-terminal dimerization do-
main and a C-terminal FAT-H domain (Fig. 2). A flexible hinge 
region links CCM3’s N-terminal dimerization and C-terminal 
FAT-H domains. The FAT-H domain contains an exquisitely 
conserved hydrophobic patch 1 (HP1) site, and this site is im-
portant for interacting with LD-like motif of CCM2, the striatins 
(75) and paxillin (85). CCM3 can either homodimerize (86) or 
directly heterodimerize with each of the three GCKIII ser-
ine/threonine kinases: STK24 (MST3), STK25 (Ysk1; Sok1) and 
MST4 (MASK) (86-89). It has been suggested that the inter-
action of CCM3 with GCKIII kinases and with striatin, a regu-
latory subunit of the PP2A phosphatase holoenzyme, may 
cause CCM3 to act as a hub within the STRIPAK complex, 
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bringing the GCKIII kinases to the STRIPAK phosphatase for the 
regulation of cell polarity, further linking CCM3 with vascular 
development (70, 90). CCM3 is localized to the cell membrane 
upon VEGF stimulation where it protects VEGFR2 from endo-
cytosis (91), and CCM3 interaction with Phosphatidylinositol 
(3,4,5)-trisphosphate may play a role in CCM3 localization to 
the plasma membrane (92). 

CCM THERAPEUTICS

Currently, there is no approved medical therapy for treating 
CCM other than surgical resection (3). Readers are advised to 
refer to a recent review that provides detailed information 
about CCM management including diagnosis and surgical and 
conservative treatment (93). Recent studies including whole 
genome sequencing studies have suggested that both sporadic 
cases with multiple lesions and familial cases of CCM have a 
common genetic underpinning of the two-hit mutation mecha-
nism in the ccm genes and that the majority, if not all, of these 
sporadic cases with multiple lesions are really genetic cases 
(43). These findings imply that both familial and part of spora-
dic cases of CCM may be amenable to the same medical 
therapy. 

Chemical inhibition of Rho activity in endothelial cells res-
cued CCM phenotypes in vitro (48) and administration of fasu-
dil, a Rho-kinase inhibitor, resulted in fewer, smaller, and less 
hemorrhagic lesions in mice with CCM1 mutations. This was 
the first report of successful pharmacologic therapy in a CCM 
animal model (8) and the results were reproduced in a sepa-
rate report (94). Statin therapy was suggested for CCM and it 
showed symptomatic improvement in a mouse model (50). 
Inhibition of HMG-CoA reductase by statin not only decreases 
cholesterol production, but also reduces geranyl-geranyl-py-
rophosphate (GGPP), necessary for the isoprenylation of RhoA, 
critical for tethering RhoA to the cell membrane and activation 
of the small GTPase. However, statin administration was asso-
ciated with an increased risk of intracerebral hemorrhage (95) 
and CCM patients receiving statin medications for routine car-
diovascular indications showed lower permeability in brain 
white matter, but not in lesion (96). These findings indicate 
that the clinical application of statin does not appear to be fea-
sible at this moment. It is worthwhile to mention about the in-
hibitors of TGF signaling. In the CCM1 mouse model, 
LY-364947, an inhibitor of TGF- type I receptors and phos-
phorylation of SMAD signaling, significantly reduced phos-
phorylated SMAD1 levels and inhibited the EndMT switch 
(12). The combination of this inhibitor and SB-431542 
(another inhibitor of SMAD phosphorylation) reduced the 
number of vascular malformations and prevented vascular 
“leakage”. Sulindac, a FDA approved, non-steroidal and an-
ti-inflammatory drug, can control the development of CCM le-
sions in CCM3 knockout mice through suppression of beta-cat-
enin activity (10).

CONCLUSIONS AND PERSPECTIVE

Because functional manipulation of CCM signaling has a good 
potential for regulating systemic blood vessel permeability and 
angiogenesis (7-9), importantly that of the BBB and possibly tu-
mor vasculature, the research field of CCM is now growing 
rapidly. However, our understanding of the composition of the 
CCM macromolecular complexes and associated functional 
networks is still in its infancy. Also, we have no understanding 
of the phenotypes that may arise from increased expression of 
CCM proteins. In our laboratory, we observed increased ex-
pression of ccm genes during the progression of prostate can-
cer, potentially implicating the involvement of ccm genes in 
cancer signaling(data not shown). I expect that further studies 
will reveal how the formation of the CCM signaling platform is 
regulated and also provide answers to important unresolved 
questions in this field.
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