DOI QR코드

DOI QR Code

비뇨생식기계 검체로부터 분리된 Ureaplasma 종의 Fluoroquinolone 내성과 관련된 gyrA, gyrB, parC, parE 유전자의 돌연변이 양상

Mutation Patterns of gyrA, gyrB, parC and parE Genes Related to Fluoroquinolone Resistance in Ureaplasma Species Isolated from Urogenital Specimens

  • 조은정 (삼성서울병원 진단검사의학과) ;
  • 황유연 (삼성서울병원 진단검사의학과) ;
  • 구본경 (삼성서울병원 진단검사의학과) ;
  • 박제섭 (건양대학교 의과학대학 임상병리학과) ;
  • 김영권 (건양대학교 의과학대학 임상병리학과) ;
  • 김성현 (부산가톨릭대학교 보건과학대학 임상병리학과)
  • Cho, Eun-Jung (Department of Laboratory Medicine, Samsung Medical Center) ;
  • Hwang, Yu Yean (Department of Laboratory Medicine, Samsung Medical Center) ;
  • Koo, Bon-Kyeong (Department of Laboratory Medicine, Samsung Medical Center) ;
  • Park, Jesoep (Department of Biomedical Laboratory Science, College of Medical Sciences, Konyang University) ;
  • Kim, Young Kwon (Department of Biomedical Laboratory Science, College of Medical Sciences, Konyang University) ;
  • Kim, Sunghyun (Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan)
  • 투고 : 2016.04.03
  • 심사 : 2016.04.27
  • 발행 : 2016.06.30

초록

Fluoroquinolone 계 항생제의 광범위한 사용으로 인해 이 약제에 대한 내성 Ureaplasma 종의 분리 비율이 높아지고 있다. Fluoroquinolone 계 항생제 내성은 주로 DNA gyrase와 topoisomerase IV 유전자의 돌연변이로 인해 발생하는 것으로 알려져 있다. DNA gyrase는 A와 B 2개의 소단위로 이루어져 있으며, gyrA와 gyrB 유전자에 의해 암호화되어 있고, Topoisomerase IV는 parC와 parE 유전자에 의해 암호화되어 있다. 본 연구가 진행된 서울의 1개 3차 병원에서 2012년부터 2013년까지 1년동안 Ureaplasma 종의 fluoroquinolone 계 항생제인 OFL과 CIP의 항생제검사 감수성 결과를 분석한 결과 내성과 중등도를 합산할 경우 66.08%, 92.69%로 매우 높은 내성 비율을 보였다. 이에 Ureaplasma 종을 OFL과 CIP에 대한 감수성을 기준으로 4개 그룹으로 분류하여 gyrA, gyrB, parC, parE 유전자의 돌연변이 여부를 검사하여 항생제 내성과의 관련성을 밝히고자 하였다. 그 중 parC 유전자의 돌연변이 빈도가 높아 topoisomerase IV의 돌연변이가 fluoroquinolone 계 약제에 대한 내성과 밀접한 관련이 있음을 확인할 수 있었다. 본 연구를 통해 GyrB의 Asn481Ser, ParC의 Phe149Leu, Asp150Met, Asp151Ile, Ser152Val, ParE의 Pro446Ser, Arg448Lys을 추가로 발견할 수 있었다. 최근 fluoroquinolone 계 항생제의 사용이 증가하고 있기 때문에 추후 Ureaplasma 종의 fluoroquinolone 계 항생제 내성에 대한 지속적인 모니터링이 필수적일 것으로 사료되며, 이와 관련한 유전자의 돌연변이 양상과의 상관관계를 분석하여 기존 배양검사의 단점을 보완할 수 있는 분자 진단학적 검사법의 추가적인 분석이 필요할 것으로 사료된다.

Ureaplasma species can normally colonize in the bodies of healthy individuals. Their colonization is associated with various diseases including non-gonococcal urethritis, chorioamnionitis, neonatal meningitis, and prematurity. In 2012, the sum of the resistant and intermediate resistant rates of Ureaplasma spp. to ofloxacin and ciprofloxacin was 66.08% and 92.69%, respectively. DNA point mutations in the genes encoding DNA gyrase (topoisomerase II) and topoisomerase IV are commonly responsible for fluoroquinolone resistance. Each enzyme is composed of two subunits encoded by gyrA and gyrB genes for DNA gyrase and parC and parE genes for topoisomerase IV. In the current study, these genes were sequenced in order to determine the role of amino acid substitutions in Ureaplasma spp. clinical isolates. From December 2012 to May 2013, we examined mutation patterns of the quinolone resistance-determining region (QRDR) in Ureaplasma spp. DNA sequences in the QRDR region of Ureaplasma clinical isolates were compared with those of reference strains including U. urealyticum serovar 8 (ATCC 27618) and U. parvum serovar 3 (ATCC 27815). Mutations were detected in all ofloxacin- and ciprofloxacin-resistant isolates, however no mutations were detected in drug-susceptible isolates. Most of the mutations related to fluoroquinolone resistance occurred in the parC gene, causing amino acid substitutions. Newly found amino acid substitutions in this study were Asn481Ser in GyrB; Phe149Leu, Asp150Met, Asp151Ile, and Ser152Val in ParC; and Pro446Ser and Arg448Lys in ParE. Continuous monitoring and accumulation of mutation data in fluoroquinolone-resistant Ureaplasma clinical isolates are essential to determining the tendency and to understanding the mechanisms underlying antimicrobial resistance.

키워드

참고문헌

  1. Kim SG, Sung SJ, Choi HS, Kim EC, Suk JS. Detection of Ureaplasma urealyticum and Mycoplasma hominis using urea broth and commercial medium Mycoscreen GU. Korean J Clin Lab Sci. 1997;29:74-80.
  2. Waites KB, Katz B, Schelonka RL. Mycoplasmas and ureaplasmas as neonatal pathogens. Clin Microbiol Rev. 2005;18(4):757-789. https://doi.org/10.1128/CMR.18.4.757-789.2005
  3. Choi M, Parl I. Genetic classification and antimicrobial resistance of Ureaplasma urealyticum isolated from urine. J Bacteriol Virol. 2012;42(2):156-161. https://doi.org/10.4167/jbv.2012.42.2.156
  4. Koh E, Kim S, Kim IS, Maeng KY, Lee SA. Antimicrobial susceptibilities of Ureaplasma urealyticum and Mycoplasma hominis in pregnant women. Korean J Clin Microbiol. 2009;12(4):15-162.
  5. Waites KB, Crouse DT, Cassell GH. Therapeutic considerations for Ureaplasma urealyticum infections in neonates. Clin Infect Dis. 1993;17(Suppl 1):S208-214. https://doi.org/10.1093/clinids/17.Supplement_1.S208
  6. Mihai M, Vaneltin N, Anton G, Coralia B, Nora M, Demetra S. High prevalence of fluoroquinolones resistance in Ureaplasma and Mycoplasma strains isolated from infertile women under initial evaluation in North-east Romania. Rom Biotechnol Lett. 2011;16(1):5859-62.
  7. Kong F, James G, Ma Z, Gordon S, Bin W, Gilbert GL. Phylogenetic analysis of Ureaplasma urealyticum support for the establishment of a new species, Ureaplasma parvum. Int J Syst Bacteriol. 1999;49(Pt 4):1879-1889. https://doi.org/10.1099/00207713-49-4-1879
  8. Bebear CM, Renaudin H, Charron A, Gruson D, Lefrancois M, Bebear C. In vitro activity of trovafloxacin compared to those of five antimicrobials against mycoplasmas including Mycoplasma hominis and Ureaplasma urealyticum fluoroquinolone-resistant isolates that have been genetically characterized. Antimicrob Agents Chemother. 2000;44(9):2557-2560. https://doi.org/10.1128/AAC.44.9.2557-2560.2000
  9. Robertson JA, Stemke GW, Davis JW Jr, Harasawa R, Thirkell D, Kong F, et al. Proposal of Ureaplasma parvum spp. nov. and emended description of Ureaplasma urealyticum (Shepard et al. 1974) Robertson et al. 2001. Int J Syst Evol Microbiol. 2002;52(Pt 2):587-597. https://doi.org/10.1099/00207713-52-2-587
  10. Robicsek A, Strahilevitz J, Jacoby GA, Macielag M, Abbanat D, Park CH, et al. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med. 2006;12(1):83-88. https://doi.org/10.1038/nm1347
  11. Hooper, D. C. Bacterial topoisomerases, anti-topoisomerases, and anti-topoisomerase resistance. Clin Infect Dis.1998;27 (Suppl 1):S54-63. https://doi.org/10.1086/514923
  12. Zhang W, Wu Y, Yin W, Yu M. Study of isolation of fluoroquinolone-resistant Ureaplasma urealyticum and identification of mutant sites. Chin Med J. 2002;115(10):1573-1575. https://doi.org/10.3760/j.issn:0366-6999.2002.10.033
  13. Bebear CM, Renaudin H, Charron A, Clerc M, Pereyre S, Bebear C. DNA gyrase and topoisomerase IV mutations in clinical isolates of Ureaplasma spp. and Mycoplasma hominis resistant to fluoroquinolones. Antimicrob Agents Chemother. 2003;47(10):3323-3325. https://doi.org/10.1128/AAC.47.10.3323-3325.2003
  14. Duffy L, Glass J, Hall G, Avery R, Rackley R, Peterson S, et al. Fluoroquinolone resistance in Ureaplasma parvum in the United States. J Clin Microbiol. 2006;44(4):1590-1591. https://doi.org/10.1128/JCM.44.4.1590-1591.2006
  15. Beeton ML, Chalker VJ, Kotecha S, Spiller OB. Comparison of full gyrA, gyrB, parC and parE gene sequences between all Ureaplasma parvum and Ureaplasma urealyticum serovars to separate true fluoroquinolone antibiotic resistance mutations from non-resistance polymorphism. J Antimicrob Chemother. 2009;64(3):529-538. https://doi.org/10.1093/jac/dkp218
  16. Kamiya Y, Shimada Y, Ito S, Kikuchi M, Yasuda M, Kawamura Y, et al. Analysis of the quinolone-resistance determining region of the gyrA gene and the analogous region of the parC gene in Ureaplasma parvum and Ureaplasma urealyticum detected in first-void urine of men with non-gonococcal urethritis. J Antimicrob Chemother. 2013;68:480-482. https://doi.org/10.1093/jac/dks417