DOI QR코드

DOI QR Code

Removal of Cadmium Ions Using Robina pseudoacacie Bark

아카시아 수피를 이용한 카드뮴 이온의 제거

  • Choi, Suk Soon (Department of Biological and Environmental Engineering, Semyung University) ;
  • Kim, Min-Ji (Department of Biological and Environmental Engineering, Semyung University) ;
  • Cha, Hyung Joon (School of Interdisciplinary of Bioscience and Biotechnology, Pohang University of Science and Technology)
  • 최석순 (세명대학교 바이오환경공학과) ;
  • 김민지 (세명대학교 바이오환경공학과) ;
  • 차형준 (포항공과대학교 시스템생명공학부)
  • Received : 2016.04.27
  • Accepted : 2016.05.15
  • Published : 2016.06.10

Abstract

Because several wood barks are massively produced in the forest area of Chungbuk province, it is required to develop technologies for their effective utilization. In this study, three kinds of barks from Robina pseudoacacie, Pinus densiflora, and Castanea crenata were used to remove water-soluble cadmium ions having 10, 20, 50, and 100 mg/L concentrations in each batch experiments, and R. pseudoacacie bark was selected as the most excellent biosorbent. Also, treatments with various acids and bases were performed to increase the removal efficiency of 100 mg/L cadmium ions using R. pseudoacacie bark as a biosorbent. When R. pseudoacacie bark was modified with 0.5 M KOH, the relatively high removal efficiency and adsorption amount of cadmium ions were obtained. In addition, when 9 M KOH-treated R. pseudoacacie bark was used for 30 min, the highest removal efficiency of 100 mg/L cadmium ions was 84.3%. Therefore, this experimental result can be effectively used as an environmental-friendly bioremediation technology to remove cadmium ions existed with various concentrations in water bodies and soils.

충북 지역 산림에서는 여러 가지 나무 수피들의 대량 생산으로 인하여, 이를 효과적으로 활용하는 기술 개발이 요구되고 있다. 본 연구에서는 3종류(아카시아, 소나무, 밤나무) 수피들을 이용한 회분식 실험에 의하여, 수중에 용해된 10, 20, 50, 100 mg/L 카드뮴 이온의 제거효율이 가장 우수한 생물흡착제로서 아카시아 수피를 선별하였다. 그리고, 아카시아 수피를 사용하여 100 mg/L 카드뮴 이온의 제거효율을 증가시키기 위하여 다양한 산과 염기 처리가 수행되었다. 0.5 M 수산화칼륨(KOH)으로 아카시아 수피가 개질되었을 때, 비교적 높은 카드뮴 이온 제거효율과 흡착량을 얻었다. 또한, 9 M KOH로 개질된 아카시아 수피를 사용하여 30 min 반응이 이루어졌을 때, 100 mg/L 카드뮴 이온의 최대 제거효율은 84.3%를 나타내었다. 따라서, 본 실험 결과들은 수계와 토양에 다양한 농도로 존재하는 카드뮴 이온을 친환경적으로 처리할 수 있는 생물복원(bioremediation) 기술로 유용하게 사용될 수 있을 것이다.

Keywords

References

  1. M.-H. Baek and D.-S. Kim, Adsorption treatment characteristics of cadmium ion containing wastewater using waste tire as an adsorbent, J. Kor. Soc. Water Qual., 22(3), 498-503 (2006).
  2. H.-S. Shin, C.-H. Lee, Y.-S. Lee, and K.-H. Kang, Removal of Heavy Metal from aqueous solution by a column packed with peat-humin, J. Kor. Soc. Environ. Eng., 27(5), 535-541 (2005).
  3. Y.-H. Li, S. Wang, Z. Luan, J. Ding, C. Xu, and D. Wu, Adsorption of cadmium(II) from aqueous solution, Carbon, 41, 1057-1062 (2003). https://doi.org/10.1016/S0008-6223(02)00440-2
  4. F. Fu and Q. Wang, Removal of heavy metal ions from wastewater: A review, J. Environ. Manage., 92, 407-418 (2011). https://doi.org/10.1016/j.jenvman.2010.11.011
  5. J. Fu, Q. Zhou, J. Liu, W. Liu, T. Wang, Q. Zhang, and G. Jiang, High levels of heavy metals in rice (Oryza sativa L.) from a typical E-waste recycling area in southest China and its potential risk to human health, Chemosphere, 71, 1269-1275 (2008). https://doi.org/10.1016/j.chemosphere.2007.11.065
  6. A. Rathinam, B. Maharshi, S. K. Janardhanan, R. R. Jonnalagadda, and B. U. Nair, Biosorption of cadmium metal ion from simulated wastewaters using Hypnea valentiae biomass: A kinetic and theromodynamic study, Bioresour. Technol., 101, 1466-1470 (2010). https://doi.org/10.1016/j.biortech.2009.08.008
  7. X. Xiao, S. Luo, G. Zeng, W. Wei, Y. Wan, L. Chen, H. Guo, Z. Cao, L. Yang, J. Chen, and Q. Xi, Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp. LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L., Bioresour. Technol., 101, 1668-1674 (2010). https://doi.org/10.1016/j.biortech.2009.09.083
  8. M. F. Ahmad, S. Haydar, A. A. Bhatti, and A. J. Bari, Application of artificial neural network for the prediction of biosorption capacity of immobilized Bacillus subtilis for the removal of cadmium ions from aqueous solution, Biochem. Eng. J., 84, 83-90 (2014). https://doi.org/10.1016/j.bej.2014.01.004
  9. P. Arivalagan, D. Singaraj, V. Haridass, and T. Kaliannan, Removal of cadmium from aqueous solution by batch studies using Bacillus cereus, Ecol. Eng., 71, 728-735 (2014). https://doi.org/10.1016/j.ecoleng.2014.08.005
  10. W.-B. Lu, J.-J. Shi, C.-H. Wang, and J.-S. Chang, Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance, J. Hazard. Mater. B, 134, 80-86 (2006). https://doi.org/10.1016/j.jhazmat.2005.10.036
  11. K. Tsekova, D. Todorova, V. Dencheva, and S. Ganeva, Biosorption of copper(II) and cadmium(II) from aqueous solutions by free and immobilized biomass of Aspergillus niger, Bioresour. Thechnol., 101, 1727-1731 (2010). https://doi.org/10.1016/j.biortech.2009.10.012
  12. R. Vimala, and N. Das, Biosorption of Cadmium (II), and lead (II) from aqueous solutions using mushrooms: A comparative study, J. Hazard. Mater., 168, 376-382 (2009). https://doi.org/10.1016/j.jhazmat.2009.02.062
  13. P. Vasudevan, V. Padmavathy, and S. C. Dhingra, Kinetics of biosorption of cadmium on baker's yeast, Bioresour. Thechnol., 89, 281-287 (2003). https://doi.org/10.1016/S0960-8524(03)00067-1
  14. Y. Goksungur, S. Uren, and U. Guvenc, Biosorption of cadmium and lead ions by ethanol treated waste baker's yeast biomass, Bioresour. Thechnol., 96, 103-109 (2005). https://doi.org/10.1016/j.biortech.2003.04.002
  15. L. S. Ferreira, M. S. Rodrigues, J. C. M. D. Carvalho, A. Lodi, E. Finocchio, P. Perego, and A. Converti, Adsorption of $Ni^{2+}$, $Zn^{2+}$, and $Pb^{2+}$ onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris. I. single metal systems, Chem. Eng. J., 173, 326-333 (2011). https://doi.org/10.1016/j.cej.2011.07.039
  16. D. Bulgariu and L. Bulgariu, Equilibrium and kinetics studies of heavy metal ions biosorption on green algae waste biomass, Bioresour. Technol., 103, 489-493 (2012). https://doi.org/10.1016/j.biortech.2011.10.016
  17. P. Lodeiro, B. Cordero, J. L. Barriada, R. Herrero, and M. E. S. D. Vicente, Biosorption of cadmium by biomass of brown marine macroalgae, Bioresour. Technol., 96, 1796-1803 (2005). https://doi.org/10.1016/j.biortech.2005.01.002
  18. U. Kumar and M. Bandyopadhay, Sorption of cadmium from aqueous solution using pretreated rice husk, Bioresour. Technol., 97, 104-109 (2006). https://doi.org/10.1016/j.biortech.2005.02.027
  19. C. Jeon, Removal of copper ion using rice hulls, J. Ind. Eng. Chem., 17, 517-520 (2011). https://doi.org/10.1016/j.jiec.2010.10.020
  20. S.-K. Park, H.-N. Kim, and Y.-K. Kim, Efficacy of Cu(II) adsorption by chemical modification of pine bark, J. Kor. Soc. Environ. Eng., 29(8), 930-937 (2007).
  21. I. Gaballah, D. Goy, E. Allain, G. Kilbertus, and J. Thauront, Recovery of copper through decontamination of synthetic solutions using modified barks, Metall. Mater. Trans. B, 28, 13-23 (1997). https://doi.org/10.1007/s11663-997-0122-3
  22. I. Gaballah and G. Kilbertus, Recovery of heavy metal ions through decontamination of synthetic solutions and industrial effluents using modified barks, J. Geochem. Explor., 62, 241-286 (1998). https://doi.org/10.1016/S0375-6742(97)00068-X
  23. T. G. Ammari, Utilization of a natural ecosystem bio-waste; leves of Arundo donax reed, as a raw material of low-cost eco-biosorbent for cadmium removal from aqueous phase, Ecol. Eng., 71, 466-473 (2014). https://doi.org/10.1016/j.ecoleng.2014.07.067
  24. Y. H. Kim, J. Y. Park, Y. J. Yoo, and J. W. Kwak, Removal of lesd using xanthated marine brown alga, Undaria pinnatifida, Process Biochem., 34, 647-652 (1999). https://doi.org/10.1016/S0032-9592(98)00137-X
  25. S. H. Min, J. S. Han, E. W. Shin, and J. K. Park, Improvement of cadmium ion removal by base treatment of juniper fiber, Water Res., 38, 1289-1295 (2004). https://doi.org/10.1016/j.watres.2003.11.016