DOI QR코드

DOI QR Code

Introduction to research of atomically thin MoS2 and its electrical properties

2차원 MoS2 물질 기반의 전자소자 연구

  • 이탁희 (서울대학교 물리천문학부) ;
  • 김태영 (서울대학교 물리천문학부) ;
  • 조경준 (서울대학교 물리천문학부) ;
  • 박진수 (서울대학교 물리천문학부)
  • Published : 2016.03.30

Abstract

Molybdenum disulfide ($MoS_2$), which has 0.65 nm-thick atomic layer, can be easily separated layer by layer due to weak van der Waals interactions in out-of-plane direction. ($MoS_2$), has a good potential in nanoelectronics, because it has high electrical mobility and On/Off ratio. Its band gap energy changes from indirect to direct band gap energy as it goes from bulk to monolayer. Therefore, atomically thin ($MoS_2$), is widely studied in academic and engineering fields. Here, we introduce the research of atomically thin $MoS_2$ and discuss the research directions.

Keywords

References

  1. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotech. 6, 147 (2011). https://doi.org/10.1038/nnano.2010.279
  2. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010). https://doi.org/10.1103/PhysRevLett.105.136805
  3. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, Nano Lett. 11, 5111 (2011). https://doi.org/10.1021/nl201874w
  4. W. Park, J. Park, J. Jang, H. Lee, H. Jeong, K. Cho, S. Hong, and T. Lee, Nanotechnology 24, 095202 (2013). https://doi.org/10.1088/0957-4484/24/9/095202
  5. K. Cho, W. Park, J. Park, H. Jeong, J. Jang, T.-Y. Kim, W. K. Hong, S. Hong, and T. Lee, ACS Nano 7, 7751 (2013). https://doi.org/10.1021/nn402348r
  6. J. R. Schwank, M. R. Shaneyfelt, D. M. Fleetwood, J. A. Felix, P. E. Dodd, P. Paillet, and V. Ferlet-Cavrois, IEEE Trans. Nucl. Sci. 55, 1833 (2008). https://doi.org/10.1109/TNS.2008.2001040
  7. T.-Y. Kim, K. Cho, W. Park, J. Park, Y. Song, S. Hong, W.-K. Hong, and T. Lee, ACS Nano 8, 2774 (2014). https://doi.org/10.1021/nn4064924
  8. K. Cho, T.-Y. Kim, W. Park, J. Park, D. Kim, J. Jang, H. Jeong, S. Hong, and T. Lee, Nanotechnology 25, 155201 (2014). https://doi.org/10.1088/0957-4484/25/15/155201
  9. J. Pak, J. Jang, K. Cho, T.-Y. Kim, J.-K. Kim, Y. Song, W.-K. Hong, M. Min, H. Lee, and T. Lee, Nanoscale 7, 18780 (2015). https://doi.org/10.1039/C5NR04836B
  10. H. Qiu, T. Xu, Z. Wang, W. Ren, H. Nan, Z. Ni, Q. Chen, S. Yuan, F. Miao, F. Song et al., Nat. Commun. 4, 2642 (2013). https://doi.org/10.1038/ncomms3642
  11. K. Cho, M. Min, T.-Y. Kim, H. Jeong, J. Pak, J.-K. Kim, J. Jang, S. J. Yoon, Y. H. Lee, W.-K. Hong, and T. Lee, ACS Nano 9, 8044 (2015). https://doi.org/10.1021/acsnano.5b04400
  12. Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. Wang, C. S. Chang, L. J. Li, and T. W. Lin, Adv. Mater. 24, 2320 (2012). https://doi.org/10.1002/adma.201104798
  13. W. Park, J. Baik, T.-Y. Kim, K. Cho, W.-K. Hong, H.-J. Shin, and T. Lee, ACS Nano 8, 4961 (2014). https://doi.org/10.1021/nn501019g
  14. T.-Y. Kim, M. Amani, G. H. Ahn, Y. Song, A. Javey, S. Chung, and T. Lee, ACS Nano 10, 2819 (2016). https://doi.org/10.1021/acsnano.5b07942
  15. M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. KC, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager III, X. Zhang, E. Yablonovitch, and A. Javey, Science 350, 1065 (2015). https://doi.org/10.1126/science.aad2114