References
- Attiwill, P. M., & Adams, M. A. (1993). Nutrient cycling in forests. New Phytologist, 124, 561-582. https://doi.org/10.1111/j.1469-8137.1993.tb03847.x
- Grigal, D. F. (2000). Effects of extensive forest management on soil productivity. Forest Ecology and Management, 138, 167-185. https://doi.org/10.1016/S0378-1127(00)00395-9
- Boerner, R. E. J., Giai, C., Huang, J., & Miesel, J. R. (2008). Initial effects of fire and mechanical thinning on soil enzyme activity and nitrogen transformations in eight North American forest ecosystems. Soil Biology and Biochemistry, 40, 3076-3085. https://doi.org/10.1016/j.soilbio.2008.09.008
- Achat, D. L., Deleuze, C., Landmann, G., Pousse, N., Ranger, J., & Augusto, L. (2015). Quantifying consequences of removing harvesting residues on forest soils and tree growth-a meta-analysis. Forest Ecology and Management, 348, 124-141. https://doi.org/10.1016/j.foreco.2015.03.042
- Son, Y., Jun, Y. C., Lee, Y. Y., Kim, R. H., & Yang, S. Y. (2004). Soil carbon dioxide evolution, litter decomposition, and nitrogen availability four years after thinning in a Japanese larch plantation. Communications in Soil Science and Plant Analysis, 35, 1111-1122. https://doi.org/10.1081/CSS-120030593
- Masyagina, O. V., Hirano, T., Ji, D. H., Choi, D. S., Qu, L., Fujinuma, Y., Sasa, K., Matsuura, Y., Prokushkin, S. G., & Koike, T. (2006). Effect of spatial variation of soil respiration rates following disturbance by timber harvesting in a larch plantation in northern Japan. Forest Science and Technology, 2, 80-91. https://doi.org/10.1080/21580103.2006.9656303
- Smolander, A., Kitunen, V., Kukkola, M., & Tamminen, P. (2013). Response of soil organic matter layer characteristics to logging residues in three Scots pine thinning stands. Soil Biology and Biochemistry, 66, 51-59. https://doi.org/10.1016/j.soilbio.2013.06.017
- Hwang, J., & Son, Y. (2006). Short-term effects of thinning and liming on forest soils of pitch pine and Japanese larch plantations in central Korea. Ecological Research, 21, 671-680. https://doi.org/10.1007/s11284-006-0170-1
- Kim, S., Yoon, T. K., Han, S., Han, S. H., Lee, J., Kim, C., Lee, S.-T., Seo, K. W., Yang, A.-R., & Son, Y. (2015). Initial effects of thinning on soil carbon storage and base cations in a naturally regenerated Quercus spp. forest in Hongcheon, Korea. Forest Science and Technology, 11, 172-176. https://doi.org/10.1080/21580103.2014.957357
- Giai, C., & Boerner, R. E. J. (2007). Effects of ecological restoration on microbial activity, microbial functional diversity, and soil organic matter in mixed-oak forests of southern Ohio, USA. Applied Soil Ecology, 35, 281-290. https://doi.org/10.1016/j.apsoil.2006.08.003
- Adamczyk, B., Adamczyk, S., Kukkola, M., Tamminen, P., & Smolander, A. (2015). Logging residue harvest may decrease enzymatic activity of boreal forest soils. Soil Biology and Biochemistry, 82, 74-80. https://doi.org/10.1016/j.soilbio.2014.12.017
- Sinsabaugh, R. L., Lauber, C. L., Weintraub, M. N., Ahmed, B., Allison, S. D., Crenshaw, C., Contosta, A. R., Cusack, D., Frey, S., Gallo, M. E., Gartner, T. B., Hobbie, S. E., Holland, K., Keeler, B. L., Powers, J. S., Stursova, M., Takacs-Vesbach, C., Waldrop, M. P., Wallenstein, M. D., Zak, D. R., & Zeglin, L. H. (2008). Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 11, 1252-1264. https://doi.org/10.1111/j.1461-0248.2008.01245.x
- Korea Forest Service. (2015). Statistical yearbook of forestry. Daejeon: Korea Forest Service. (In Korean).
- Hwang, J., Son, Y., Kim, C., Yi, M.-J., Kim, Z.-S., Lee, W.-K., & Hong, S.-K. (2007). Fine root dynamics in thinned and limed pitch pine and Japanese larch plantations. Journal of Plant Nutrition, 30, 1821-1839. https://doi.org/10.1080/01904160701628940
- Lee, S. K., Son, Y., Lee, W. K., Yang, A.-R., Noh, N. J., & Byun, J.-G. (2010). Influence of thinning on carbon storage in a Japanese larch (Larix kaempferi) plantation in Yangpyeong, central Korea. Forest Science and Technology, 6, 35-40. https://doi.org/10.1080/21580103.2010.9656356
- Ko, S., Son, Y., Noh, N. J., Yoon, T. K., Kim, C., Bae, S.-W., Hwang, J., Lee, S.-T., & Kim, H.-S. (2012). Influence of thinning on carbon storage in soil, forest floor and coarse woody debris of Larix kaempferi stands in Korea. Forest Science and Technology, 8, 116-121. https://doi.org/10.1080/21580103.2012.672018
- Baldrian, P., & Stursova, M. (2011). Enzymes in forest soils. In G. Shukla & A. Varma (Eds.), Soil enzymology (pp. 61-73). Heidelberg: Springer.
- Olander, L. P., & Vitousek, P. M. (2000). Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry, 49, 175-190. https://doi.org/10.1023/A:1006316117817
- Tabatabai, M. A., Ekenler, M., & Senwo, Z. N. (2010). Significance of enzyme activities in soil nitrogen mineralization. Communications in Soil Science and Plant Analysis, 41, 595-605. https://doi.org/10.1080/00103620903531177
- Kim, S., Han, S. H., Lee, J., Kim, C., Lee, S.-T., & Son, Y. (2016). Impact of thinning on carbon storage of dead organic matter across larch and oak stands in South Korea. iForest, 9, 593-598. https://doi.org/10.3832/ifor1776-008
- Park, C.-W., Ko, S., Yoon, T. K., Han, S., Yi, K., Jo, W., Jin, L., Lee, S. J., Noh, N. J., Chung, H., & Son, Y. (2011). Differences in soil aggregate, microbial biomass carbon concentration, and soil carbon between Pinus rigida and Larix kaempferi plantations in Yangpyeong, central Korea. Forest Science and Technology, 8, 38-46.
- Mulvaney, R. L. (1996). Nitrogen-inorganic forms. In D. L. Sparks, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, & M. E. Sumner (Eds.), Methods of soil analysis. Part 3-chemical methods (pp. 1146-1155). Madison: Soil Sci Soc Am.
- Miranda, K. M., Espey, M. G., & Wink, D. A. (2001). A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide, 5, 62-71. https://doi.org/10.1006/niox.2000.0319
- Bray, R. H., & Kurtz, L. T. (1945). Determination of total, organic, and available forms of phosphorus in soils. Soil Science, 59, 39-46. https://doi.org/10.1097/00010694-194501000-00006
- DeForest, J. L. (2009). The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA. Soil Biology and Biochemistry, 41, 1180-1186. https://doi.org/10.1016/j.soilbio.2009.02.029
- Hodge, A., Robinson, D., & Fitter, A. (2000). Are microorganisms more effective than plants at competing for nitrogen? Trends in Plant Science, 5, 304-308. https://doi.org/10.1016/S1360-1385(00)01656-3
- Siemion, J., Burns, D. A., Murdoch, P. S., & Germain, R. H. (2011). The relation of harvesting intensity to changes in soil, soil water, and stream chemistry in a northern hardwood forest, Catskill Mountains, USA. Forest Ecology and Management, 261, 1510-1519. https://doi.org/10.1016/j.foreco.2011.01.036
- Chen, X.-L., Wang, D., Chen, X., Wang, J., Diao, J.-J., Zhang, J.-Y., & Guan, Q.-W. (2015). Soil microbial functional diversity and biomass as affected by different thinning intensities in a Chinese fir plantation. Applied Soil Ecology, 92, 35-44. https://doi.org/10.1016/j.apsoil.2015.01.018
- Karaca, A., Cetin, S. C., Turgay, O. C., & Kizilkaya, R. (2011). Soil enzymes as indication of soil quality. In G. Shukla & A. Varma (Eds.), Soil enzymology (pp. 119-148). Heidelberg: Springer.
- Brzostek, E. R., Greco, A., Drake, J. E., & Finzi, A. C. (2013). Root carbon inputs to the rhizosphere stimulate extracellular enzyme activity and increase nitrogen availability in temperate forest soils. Biogeochemistry, 115, 65-76. https://doi.org/10.1007/s10533-012-9818-9
- Boyle, S. I., Hart, S. C., Kaye, J. P., & Waldrop, M. P. (2005). Restoration and canopy type influence soil microflora in a ponderosa pine forest. Soil Science Society of America Journal, 69, 1627-1638. https://doi.org/10.2136/sssaj2005.0029
- Maassen, S., Fritze, H., & Wirth, S. (2006). Response of soil microbial biomass, activities, and community structure at a pine stand in northeastern Germany 5 years after thinning. Can J of For Res., 36, 1427-1434. https://doi.org/10.1139/x06-039
- Geng, Y., Dighton, J., & Gray, D. (2012). The effects of thinning and soil disturbance on enzyme activities under pitch pine soil in New Jersey pinelands. Applied Soil Ecology, 62, 1-7. https://doi.org/10.1016/j.apsoil.2012.07.001
Cited by
- Thinning affects microbial biomass without changing enzyme activity in the soil of Pinus densiflora Sieb. et Zucc. forests after 7 years vol.75, pp.1, 2018, https://doi.org/10.1007/s13595-018-0690-1
- A multi-site approach toward assessing the effect of thinning on soil carbon contents across temperate pine, oak, and larch forests vol.424, pp.None, 2016, https://doi.org/10.1016/j.foreco.2018.04.040
- Microbial biomass and enzymatic responses to temperate oak and larch forest thinning: Influential factors for the site-specific changes vol.651, pp.2, 2016, https://doi.org/10.1016/j.scitotenv.2018.10.153
- Do different land use changes in a deciduous forest ecosystem result in alterations in soil organic C and total N stocks? vol.457, pp.1, 2016, https://doi.org/10.1007/s11104-020-04724-9
- Selective logging enhances ecosystem multifunctionality via increase of functional diversity in a Pinus yunnanensis forest in Southwest China vol.7, pp.1, 2020, https://doi.org/10.1186/s40663-020-00267-8