DOI QR코드

DOI QR Code

A comparative study of enzyme initiators for crosslinking phenol-functionalized hydrogels for cell encapsulation

  • Roberts, Justine J. (Graduate School of Biomedical Engineering, UNSW Australia) ;
  • Naudiyal, Pratibha (Graduate School of Biomedical Engineering, UNSW Australia) ;
  • Lim, Khoon S. (Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch) ;
  • Poole-Warren, Laura A. (Graduate School of Biomedical Engineering, UNSW Australia) ;
  • Martens, Penny J. (Graduate School of Biomedical Engineering, UNSW Australia)
  • 투고 : 2016.07.26
  • 심사 : 2016.09.01
  • 발행 : 2016.12.01

초록

Background: Dityrosine crosslinking in proteins is a bioinspired method of forming hydrogels. This study compares oxidative enzyme initiators for their relative crosslinking efficiency and cytocompatibility using the same phenol group and the same material platform. Four common enzyme and enzyme-like oxidative initiators were probed for resulting material properties and cell viability post-encapsulation. Results: All four initiators can be used to form phenol-crosslinked hydrogels, however gelation rates are dependent on enzyme type, concentration, and the oxidant. Horseradish peroxidase (HRP) or hematin with hydrogen peroxide led to a more rapid poly (vinyl alcohol)-tyramine (PVA-Tyr) polymerization (10-60 min) because a high oxidant concentration was dissolved within the macromer solution at the onset of crosslinking, whereas laccase and tyrosinase require oxygen diffusion to crosslink phenol residues and therefore took longer to gel (2.5+ hours). The use of hydrogen peroxide as an oxidant reduced cell viability immediately post-encapsulation. Laccase- and tyrosinase-mediated encapsulation of cells resulted in higher cell viability immediately post-encapsulation and significantly higher cell proliferation after one week of culture. Conclusions: Overall this study demonstrates that $HRP/H_2O_2$, $hematin/H_2O_2$, laccase, and tyrosinase can create injectable, in situ phenol-crosslinked hydrogels, however oxidant type and concentration are critical parameters to assess when phenol crosslinking hydrogels for cell-based applications.

키워드

과제정보

연구 과제 주관 기관 : Health Research Council of New Zealand

참고문헌

  1. Hassan CM, Peppas NA. Cellular PVA hydrogels produced by freeze/thawing. J Appl Polym Sci. 2000;76:2075-9. https://doi.org/10.1002/(SICI)1097-4628(20000628)76:14<2075::AID-APP11>3.0.CO;2-V
  2. Kuo CK, Ma PX. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. Biomaterials. 2001;22:511-21. https://doi.org/10.1016/S0142-9612(00)00201-5
  3. Phelps EA, Enemchukwu NO, Fiore VF, Sy JC, Murthy N, Sulchek TA, Barker TH, Garcia AJ. Maleimide cross-linked bioactive PEG hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in situ delivery. Adv Mater. 2012;24:64-70. 62. https://doi.org/10.1002/adma.201103574
  4. Alves MH, Young CJ, Bozzetto K, Poole-Warren LA, Martens PJ. Degradable, click poly (vinyl alcohol) hydrogels: characterization of degradation and cellular compatibility. Biomed Mater. 2012;7:024106. https://doi.org/10.1088/1748-6041/7/2/024106
  5. McKinnon DD, Domaille DW, Cha JN, Anseth KS. Biophysically defined and cytocompatible covalently adaptable networks as viscoelastic 3D cell culture systems. Adv Mater. 2014;26:865-72. https://doi.org/10.1002/adma.201303680
  6. Grover GN, Lam J, Nguyen TH, Segura T, Maynard HD. Biocompatible hydrogels by oxime Click chemistry. Biomacromolecules. 2012;13:3013-7. https://doi.org/10.1021/bm301346e
  7. Kharkar PM, Kiick KL, Kloxin AM. Designing degradable hydrogels for orthogonal control of cell microenvironments. Chem Soc Rev. 2013;42: 7335-72. https://doi.org/10.1039/C3CS60040H
  8. Temenoff JS, Shin H, Conway DE, Engel PS, Mikos AG. In vitro cytotoxicity of redox radical initiators for cross-linking of oligo (poly (ethylene glycol) fumarate) macromers. Biomacromolecules. 2003;4:1605-13. https://doi.org/10.1021/bm030056w
  9. Kurisawa M, Lee F, Wang L-S, Chung JE. Injectable enzymatically crosslinked hydrogel system with independent tuning of mechanical strength and gelation rate for drug delivery and tissue engineering. J Mater Chem. 2010; 20:5371-5. https://doi.org/10.1039/b926456f
  10. Tran NQ, Joung YK, Lih E, Park KM, Park KD. Supramolecular hydrogels exhibiting fast in situ gel forming and adjustable degradation properties. Biomacromolecules. 2010;11:617-25. https://doi.org/10.1021/bm100047y
  11. Kurisawa M, Chung JE, Yang YY, Gao SJ, Uyama H. Injectable biodegradable hydrogels composed of hyaluronic acid-tyramine conjugates for drug delivery and tissue engineering. Chem Commun. 2005;14(34):4312-4.
  12. Lim KS, Alves MH, Poole-Warren LA, Martens PJ. Covalent incorporation of non-chemically modified gelatin into degradable PVA-tyramine hydrogels. Biomaterials. 2013;34:7097-105. https://doi.org/10.1016/j.biomaterials.2013.06.005
  13. Lim KS, Ramaswamy Y, Roberts JJ, Alves MH, Poole-Warren LA, Martens PJ. Promoting cell survival and proliferation in degradable Poly (vinyl alcohol)-tyramine hydrogels. Macromol Biosci. 2015;15(10):1423-32. https://doi.org/10.1002/mabi.201500121
  14. Wang L-S, Boulaire J, Chan PPY, Chung JE, Kurisawa M. The role of stiffness of gelatin-hydroxyphenylpropionic acid hydrogels formed by enzymemediated crosslinking on the differentiation of human mesenchymal stem cell. Biomaterials. 2010;31:8608-16. https://doi.org/10.1016/j.biomaterials.2010.07.075
  15. Wang L-S, Chung JE, Pui-Yik Chan P, Kurisawa M. Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture. Biomaterials. 2010;31:1148-57. https://doi.org/10.1016/j.biomaterials.2009.10.042
  16. Partlow BP, Hanna CW, Rnjak-Kovacina J, Moreau JE, Applegate MB, Burke KA, Marelli B, Mitropoulos AN, Omenetto FG, Kaplan DL. Highly Tunable Elastomeric Silk Biomaterials. Adv Funct Mater. 2014;24:4615-24. https://doi.org/10.1002/adfm.201400526
  17. Jin R, Teixeira LS, Dijkstra PJ, van Blitterswijk CA, Karperien M, Feijen J. Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran-hyaluronic acid conjugates for cartilage tissue engineering. Biomaterials. 2010;31:3103-13. https://doi.org/10.1016/j.biomaterials.2010.01.013
  18. Lee F, Chung JE, Kurisawa M. An injectable enzymatically crosslinked hyaluronic acid-tyramine hydrogel system with independent tuning of mechanical strength and gelation rate. Soft Matter. 2008;4:880-7. https://doi.org/10.1039/b719557e
  19. Lee F, Chung JE, Kurisawa M. An injectable hyaluronic acid-tyramine hydrogel system for protein delivery. J Controlled Release. 2009;134:186-93. https://doi.org/10.1016/j.jconrel.2008.11.028
  20. Menzies DJ, Cameron A, Munro T, Wolvetang E, Grondahl L, Cooper-White JJ. Tailorable cell culture platforms from enzymatically cross-linked multifunctional poly (ethylene glycol)-based hydrogels. Biomacromolecules. 2013;14:413-23. https://doi.org/10.1021/bm301652q
  21. Park KM, Shin YM, Joung YK, Shin H, Park KD. In situ forming hydrogels based on tyramine conjugated 4-arm-PPO-PEO via enzymatic oxidative reaction. Biomacromolecules. 2010;11:706-12. https://doi.org/10.1021/bm9012875
  22. Sakai S, Moriyama K, Taguchi K, Kawakami K. Hematin is an alternative catalyst to horseradish peroxidase for in situ hydrogelation of polymers with phenolic hydroxyl groups in vivo. Biomacromolecules. 2010;11:2179-83. https://doi.org/10.1021/bm100623k
  23. Ryu JH, Lee Y, Do MJ, Jo SD, Kim JS, Kim B-S, Im G-I, Park TG, Lee H. Chitosan-g-hematin: Enzyme-mimicking polymeric catalyst for adhesive hydrogels. Acta Biomater. 2014;10:224-33. https://doi.org/10.1016/j.actbio.2013.09.014
  24. Akkara JA, Wang J, Yang D-P, Gonsalves KE. Hematin-catalyzed polymerization of phenol compounds. Macromolecules. 2000;33:2377-82. https://doi.org/10.1021/ma9906534
  25. Hollmann F, Arends IWCE. Enzyme initiated radical polymerizations. Polymers. 2012;4:759. https://doi.org/10.3390/polym4010759
  26. Lee BP, Dalsin JL, Messersmith PB. Synthesis and gelation of DOPA-modified poly (ethylene glycol) hydrogels. Biomacromolecules. 2002;3:1038-47. https://doi.org/10.1021/bm025546n
  27. Lee SH, Lee Y, Lee S-W, Ji H-Y, Lee J-H, Lee DS, Park TG. Enzyme-mediated cross-linking of pluronic copolymer micelles for injectable and in situ forming hydrogels. Acta Biomater. 2011;7:1468-76. https://doi.org/10.1016/j.actbio.2010.11.029
  28. Valderrama B, Ayala M, Vazquez-Duhalt R. Suicide inactivation of peroxidases and the challenge of engineering more robust enzymes. Chem Biol. 2002;9: 555-65. https://doi.org/10.1016/S1074-5521(02)00149-7
  29. Lim KS, Roberts JJ, Alves M-H, Poole-Warren LA, Martens PJ. Understanding and tailoring the degradation of PVA-tyramine hydrogels. J Appl Polym Sci. 2015;132:42141-9.
  30. Bryant SJ, Anseth KS. Photopolymerization of Hydrogel Scaffolds. In Scaffolding In Tissue Engineering. Boca Raton: CRC Press; 2005. p. 71-90.
  31. Nagarajan S, Nagarajan R, Tyagi R, Kumar J, Bruno FF, Samuelson LA. Biocatalytic modification of naturally occurring iron porphyrin. J Macromol Sci Part A Pure Appl Chem. 2008;45:951-6. https://doi.org/10.1080/10601320802380232
  32. Watt BE, Proudfoot AT, Vale JA. Hydrogen peroxide poisoning. Toxicol Rev. 2012;23:51-7.
  33. Heck T, Faccio G, Richter M, Thony-Meyer L. Enzyme-catalyzed protein crosslinking. Appl Microbiol Biotechnol. 2013;97:461-75. https://doi.org/10.1007/s00253-012-4569-z
  34. Chhabra M. University of California B: oxygen transport through soft contact lens and cornea: lens characterization and metabolic modeling. Berkeley: University of California; 2007.
  35. Mocali A, Caldini R, Chevanne M, Paoletti F. Induction, effects, and quantification of sublethal oxidative stress by hydrogen peroxide on cultured human fibroblasts. Exp Cell Res. 1995;216:388-95. https://doi.org/10.1006/excr.1995.1049
  36. Nyanhongo G, Kudanga T, Nugroho Prasetyo E, Gubitz G. Enzymatic Polymer Functionalisation: Advances in Laccase and Peroxidase Derived Lignocellulose Functional Polymers. In: Nyanhongo GS, Steiner W, Gubitz G, editors. Biofunctionalization of polymers and their applications, vol. Volume 125. Berlin Heidelberg: Springer; 2011. p. 47-68. Advances in Biochemical Engineering / Biotechnology.
  37. Nindl G, Peterson NR, Hughes EF, Waite LR, Johnson MT. Effect of hydrogen peroxide on proliferation, apoptosis and interleukin-2 production of Jurkat T cells. Biomed Sci Instrum. 2004;40:123-8.

피인용 문헌

  1. Orthogonal enzymatic reactions for rapid crosslinking and dynamic tuning of PEG-peptide hydrogels vol.5, pp.11, 2017, https://doi.org/10.1039/c7bm00691h
  2. Production of lignin based insoluble polymers (anionic hydrogels) by C . versicolor vol.7, pp.None, 2016, https://doi.org/10.1038/s41598-017-17696-1
  3. Dynamic PEG-Peptide Hydrogels via Visible Light and FMN‐Induced Tyrosine Dimerization vol.7, pp.22, 2016, https://doi.org/10.1002/adhm.201800954
  4. Near-Infrared-Triggered in Situ Gelation System for Repeatedly Enhanced Photothermal Brachytherapy with a Single Dose vol.12, pp.9, 2016, https://doi.org/10.1021/acsnano.8b04544
  5. Horseradish peroxidase-catalyzed hydrogelation for biomedical applications vol.6, pp.6, 2018, https://doi.org/10.1039/c8bm00056e
  6. Bio-resin for high resolution lithography-based biofabrication of complex cell-laden constructs vol.10, pp.3, 2016, https://doi.org/10.1088/1758-5090/aac00c
  7. Three-Dimensional Printing of a Tyramine Hyaluronan Derivative with Double Gelation Mechanism for Independent Tuning of Shear Thinning and Postprinting Curing vol.4, pp.8, 2016, https://doi.org/10.1021/acsbiomaterials.8b00416
  8. Dynamic control of hydrogel crosslinking via sortase-mediated reversible transpeptidation vol.83, pp.None, 2016, https://doi.org/10.1016/j.actbio.2018.11.011
  9. Amidation of methyl ester side chain bearing poly(2-oxazoline)s with tyramine: a quest for a selective and quantitative approach vol.10, pp.8, 2016, https://doi.org/10.1039/c9py00014c
  10. Strategies for Hyaluronic Acid-Based Hydrogel Design in Drug Delivery vol.11, pp.8, 2019, https://doi.org/10.3390/pharmaceutics11080407
  11. In Situ Self-Cross-Linkable, Long-Term Stable Hyaluronic Acid Filler by Gallol Autoxidation for Tissue Augmentation and Wrinkle Correction vol.31, pp.23, 2019, https://doi.org/10.1021/acs.chemmater.9b02802
  12. Synthesis and Applications of Hydrogels in Cancer Therapy vol.20, pp.None, 2016, https://doi.org/10.2174/1871521409666200120094048
  13. Rapid Photocrosslinking of Silk Hydrogels with High Cell Density and Enhanced Shape Fidelity vol.9, pp.4, 2020, https://doi.org/10.1002/adhm.201901667
  14. Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel‐Based Bioinks vol.9, pp.15, 2016, https://doi.org/10.1002/adhm.201901648
  15. Fundamentals and Applications of Photo-Cross-Linking in Bioprinting vol.120, pp.19, 2020, https://doi.org/10.1021/acs.chemrev.9b00812
  16. Dual Functionalization of Gelatin for Orthogonal and Dynamic Hydrogel Cross-Linking vol.7, pp.9, 2021, https://doi.org/10.1021/acsbiomaterials.1c00709
  17. Ionic and Enzymatic Multiple-Crosslinked Nanogels for Drug Delivery vol.13, pp.20, 2016, https://doi.org/10.3390/polym13203565
  18. Oxidative polymerization of hydroxytyrosol catalyzed by laccase, tyrosinase or horseradish peroxidase: influencing factors and molecular simulations vol.39, pp.15, 2016, https://doi.org/10.1080/07391102.2020.1801512