DOI QR코드

DOI QR Code

Antibacterial potency of different deposition methods of silver and copper containing diamond-like carbon coated polyethylene

  • Harrasser, Norbert (Clinic of Orthopedics and Sports Orthopedics, Klinikum rechts der Isar, Technical University of Munich) ;
  • Jussen, Sebastian (Clinic of Orthopedics and Sports Orthopedics, Klinikum rechts der Isar, Technical University of Munich) ;
  • Obermeir, Andreas (Clinic of Orthopedics and Sports Orthopedics, Klinikum rechts der Isar, Technical University of Munich) ;
  • Kmeth, Ralf (Experimental Physics IV, Institut fur Physik, Augsburg University) ;
  • Stritzker, Bernd (Experimental Physics IV, Institut fur Physik, Augsburg University) ;
  • Gollwitzer, Hans (Clinic of Orthopedics and Sports Orthopedics, Klinikum rechts der Isar, Technical University of Munich) ;
  • Burgkart, Rainer (Clinic of Orthopedics and Sports Orthopedics, Klinikum rechts der Isar, Technical University of Munich)
  • 투고 : 2016.04.07
  • 심사 : 2016.05.27
  • 발행 : 2016.09.01

초록

Background: Antibacterial coatings of medical devices have been introduced as a promising approach to reduce the risk of infection. In this context, diamond-like carbon coated polyethylene (DLC-PE) can be enriched with bactericidal ions and gain antimicrobial potency. So far, influence of different deposition methods and ions on antimicrobial effects of DLC-PE is unclear. Methods: We quantitatively determined the antimicrobial potency of different PE surfaces treated with direct ion implantation (II) or plasma immersion ion implantation (PIII) and doped with silver (Ag-DLC-PE) or copper (Cu-DLC-PE). Bacterial adhesion and planktonic growth of various strains of S. epidermidis were evaluated by quantification of bacterial growth as well as semiquantitatively by determining the grade of biofilm formation by scanning electron microscopy (SEM). Additionally silver release kinetics of PIII-samples were detected. Results: (1) A significant (p < 0.05) antimicrobial effect on PE-surface could be found for Ag- and Cu-DLC-PE compared to untreated PE. (2) The antimicrobial effect of Cu was significantly lower compared to Ag (reduction of bacterial growth by 0.8 (Ag) and 0.3 (Cu) logarithmic (log)-levels). (3) PIII as a deposition method was more effective in providing antibacterial potency to PE-surfaces than II alone (reduction of bacterial growth by 2.2 (surface) and 1.1 (surrounding medium) log-levels of PIII compared to 1.2 (surface) and 0.6 (medium) log-levels of II). (4) Biofilm formation was more decreased on PIII-surfaces compared to II-surfaces. (5) A silver-concentration-dependent release was observed on PIII-samples. Conclusion: The results obtained in this study suggest that PIII as a deposition method and Ag-DLC-PE as a surface have high bactericidal effects.

키워드

참고문헌

  1. Liu Y, Zheng Z, Zara JN, Hsu C, Soofer DE, Lee KS, Siu RK, Miller LS, Zhang X, Carpenter D, et al. The antimicrobial and osteoinductive properties of silver nanoparticle/poly (DL-lactic-co-glycolic acid)-coated stainless steel. Biomaterials. 2012;33:8745-56. https://doi.org/10.1016/j.biomaterials.2012.08.010
  2. Frank RM, Cross MB, Della Valle CJ. Periprosthetic joint infection: modern aspects of prevention, diagnosis, and treatment. J Knee Surg. 2015;28:105-12.
  3. Tzeng A, Tzeng TH, Vasdev S, Korth K, Healey T, Parvizi J, Saleh KJ. Treating periprosthetic joint infections as biofilms: key diagnosis and management strategies. Diagn Microbiol Infect Dis. 2015;81:192-200. https://doi.org/10.1016/j.diagmicrobio.2014.08.018
  4. Matsen Ko LJ, Yoo JY, Maltenfort M, Hughes A, Smith EB, Sharkey PF. The Effect of Implementing a Multimodal Approach on the Rates of Periprosthetic Joint Infection After Total Joint Arthroplasty. J Arthroplasty. 2016;31:451-5. https://doi.org/10.1016/j.arth.2015.08.043
  5. Gbejuade HO, Lovering AM, Webb JC. The role of microbial biofilms in prosthetic joint infections. Acta Orthop. 2015;86:147-58. https://doi.org/10.3109/17453674.2014.966290
  6. Baker RP, Furustrand Tafin U, Borens O. Patient-adapted treatment for prosthetic hip joint infection. Hip Int. 2015;25:316-22. https://doi.org/10.5301/hipint.5000277
  7. Lu H, Liu Y, Guo J, Wu H, Wang J, Wu G. Biomaterials with Antibacterial and Osteoinductive Properties to Repair Infected Bone Defects. Int J Mol Sci. 2016;17.
  8. ter Boo GJ, Grijpma DW, Moriarty TF, Richards RG, Eglin D. Antimicrobial delivery systems for local infection prophylaxis in orthopedic- and trauma surgery. Biomaterials. 2015;52:113-25. https://doi.org/10.1016/j.biomaterials.2015.02.020
  9. Gosheger G, Hardes J, Ahrens H, Streitburger A, Buerger H, Erren M, Gunsel A, Kemper FH, Winkelmann W, Von Eiff C. Silver-coated megaendoprostheses in a rabbit model-an analysis of the infection rate and toxicological side effects. Biomaterials. 2004;25:5547-56. https://doi.org/10.1016/j.biomaterials.2004.01.008
  10. Hardes J, Ahrens H, Gebert C, Streitbuerger A, Buerger H, Erren M, Gunsel A, Wedemeyer C, Saxler G, Winkelmann W, Gosheger G. Lack of toxicological side-effects in silver-coated megaprostheses in humans. Biomaterials. 2007;28:2869-75. https://doi.org/10.1016/j.biomaterials.2007.02.033
  11. Hoene A, Prinz C, Walschus U, Lucke S, Patrzyk M, Wilhelm L, Neumann HG, Schlosser M. In vivo evaluation of copper release and acute local tissue reactions after implantation of copper-coated titanium implants in rats. Biomed Mater. 2013;8:035009. https://doi.org/10.1088/1748-6041/8/3/035009
  12. Kumar R, Munstedt H. Silver ion release from antimicrobial polyamide/silver composites. Biomaterials. 2005;26:2081-8. https://doi.org/10.1016/j.biomaterials.2004.05.030
  13. Lee D, Cohen RE, Rubner MF. Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles. Langmuir. 2005;21:9651-9. https://doi.org/10.1021/la0513306
  14. Heidenau F, Mittelmeier W, Detsch R, Haenle M, Stenzel F, Ziegler G, Gollwitzer H. A novel antibacterial titania coating: metal ion toxicity and in vitro surface colonization. J Mater Sci Mater Med. 2005;16:883-8. https://doi.org/10.1007/s10856-005-4422-3
  15. Cloutier M, Tolouei R, Lesage O, Levesque L, Turgeon S, Tatoulian M, Mantovani D. On the long term antibacterial features of silver-doped diamondlike carbon coatings deposited via a hybrid plasma process. Biointerphases. 2014;9:029013. https://doi.org/10.1116/1.4871435
  16. Katsikogianni M, Spiliopoulou I, Dowling DP, Missirlis YF. Adhesion of slime producing Staphylococcus epidermidis strains to PVC and diamond-like carbon/silver/fluorinated coatings. J Mater Sci Mater Med. 2006;17:679-89. https://doi.org/10.1007/s10856-006-9678-8
  17. Dwivedi N, Kumar S, Carey JD, Tripathi RK, Malik HK, Dalai MK. Influence of silver incorporation on the structural and electrical properties of diamondlike carbon thin films. ACS Appl Mater Interfaces. 2013;5:2725-32. https://doi.org/10.1021/am4003183
  18. Saikko V, Ahlroos T, Calonius O, Keranen J. Wear simulation of total hip prostheses with polyethylene against CoCr, alumina and diamond-like carbon. Biomaterials. 2001;22:1507-14. https://doi.org/10.1016/S0142-9612(00)00306-9
  19. Dearnaley G. Diamond-like carbon: a potential means of reducing wear in total joint replacements. Clin Mater. 1993;12:237-44. https://doi.org/10.1016/0267-6605(93)90078-L
  20. Oliveira LY, Kuromoto NK, Siqueira CJ. Treating orthopedic prosthesis with diamond-like carbon: minimizing debris in Ti6Al4V. J Mater Sci Mater Med. 2014;25:2347-55. https://doi.org/10.1007/s10856-014-5252-y
  21. Hinuber C, Kleemann C, Friederichs RJ, Haubold L, Scheibe HJ, Schuelke T, Boehlert C, Baumann MJ. Biocompatibility and mechanical properties of diamond-like coatings on cobalt-chromium-molybdenum steel and titanium-aluminum-vanadium biomedical alloys. J Biomed Mater Res A. 2010;95:388-400.
  22. Bertoti I, Mohai M, Toth A, Ujvari T. Nitrogen-PBII modification of ultra-high molecular weight polyethylene: Composition, structure and nanomechanical properties. Surf Coatings Technol. 2007;201:6839-42. https://doi.org/10.1016/j.surfcoat.2006.09.022
  23. Schwarz F, Stritzker B. Plasma immersion ion implantation of polymers and silver-polymer nano composites. Surf Coatings Technol. 2010;204:1875-9. https://doi.org/10.1016/j.surfcoat.2009.10.044
  24. Harrasser N, Jussen S, Banke IJ, Kmeth R, von Eisenhart-Rothe R, Stritzker B, Gollwitzer H, Burgkart R. Antibacterial efficacy of ultrahigh molecular weight polyethylene with silver containing diamond-like surface layers. AMB Express. 2015;5:64. https://doi.org/10.1186/s13568-015-0148-x
  25. Zimmerli W, Ochsner PE. Management of infection associated with prosthetic joints. Infection. 2003;31:99-108. https://doi.org/10.1007/s15010-002-3079-9
  26. Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med. 2004;350:1422-9. https://doi.org/10.1056/NEJMra035415
  27. Tilton RC, Rosenberg B. Reversal of the silver inhibition of microorganisms by agar. Appl Environ Microbiol. 1978;35:1116-20.
  28. Kurtz SM, Lau E, Schmier J, Ong KL, Zhao K, Parvizi J. Infection burden for hip and knee arthroplasty in the United States. J Arthroplasty. 2008;23:984-91. https://doi.org/10.1016/j.arth.2007.10.017
  29. Zimmerli W, Moser C. Pathogenesis and treatment concepts of orthopaedic biofilm infections. FEMS Immunol Med Microbiol. 2012;65:158-68. https://doi.org/10.1111/j.1574-695X.2012.00938.x
  30. Vilain S, Cosette P, Zimmerlin I, Dupont JP, Junter GA, Jouenne T. Biofilm proteome: homogeneity or versatility? J Proteome Res. 2004;3:132-6. https://doi.org/10.1021/pr034044t
  31. Schwank S, Rajacic Z, Zimmerli W, Blaser J. Impact of bacterial biofilm formation on in vitro and in vivo activities of antibiotics. Antimicrob Agents Chemother. 1998;42:895-8.
  32. Hunter G, Dandy D. The natural history of the patient with an infected total hip replacement. J Bone Joint Surg Br. 1977;59:293-7.
  33. Groll J, Fiedler J, Bruellhoff K, Moeller M, Brenner RE. Novel surface coatings modulating eukaryotic cell adhesion and preventing implant infection. Int J Artif Organs. 2009;32:655-62. https://doi.org/10.1177/039139880903200915
  34. Harris LG, Tosatti S, Wieland M, Textor M, Richards RG. Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(L-lysine)-grafted-poly(ethylene glycol) copolymers. Biomaterials. 2004;25:4135-48. https://doi.org/10.1016/j.biomaterials.2003.11.033
  35. Bumgardner JD, Wiser R, Elder SH, Jouett R, Yang Y, Ong JL. Contact angle, protein adsorption and osteoblast precursor cell attachment to chitosan coatings bonded to titanium. J Biomater Sci Polym Ed. 2003;14:1401-9. https://doi.org/10.1163/156856203322599734
  36. Verraedt E, Braem A, Chaudhari A, Thevissen K, Adams E, Van Mellaert L, Cammue BP, Duyck J, Anne J, Vleugels J, Martens JA. Controlled release of chlorhexidine antiseptic from microporous amorphous silica applied in open porosity of an implant surface. Int J Pharm. 2011;419:28-32. https://doi.org/10.1016/j.ijpharm.2011.06.053
  37. Baffone W, Sorgente G, Campana R, Patrone V, Sisti D, Falcioni T. Comparative effect of chlorhexidine and some mouthrinses on bacterial biofilm formation on titanium surface. Curr Microbiol. 2011;62:445-51. https://doi.org/10.1007/s00284-010-9727-x
  38. Zhao L, Wang H, Huo K, Cui L, Zhang W, Ni H, Zhang Y, Wu Z, Chu PK. Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials. 2011;32:5706-16. https://doi.org/10.1016/j.biomaterials.2011.04.040
  39. Fiedler J, Kolitsch A, Kleffner B, Henke D, Stenger S, Brenner RE. Copper and silver ion implantation of aluminium oxide-blasted titanium surfaces: proliferative response of osteoblasts and antibacterial effects. Int J Artif Organs. 2011;34:882-8. https://doi.org/10.5301/ijao.5000022
  40. Holt J, Hertzberg B, Weinhold P, Storm W, Schoenfisch M, Dahners L. Decreasing bacterial colonization of external fixation pins through nitric oxide release coatings. J Orthop Trauma. 2011;25:432-7. https://doi.org/10.1097/BOT.0b013e3181f9ac8a
  41. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346-53. https://doi.org/10.1088/0957-4484/16/10/059
  42. Taglietti A, Diaz Fernandez YA, Amato E, Cucca L, Dacarro G, Grisoli P, Necchi V, Pallavicini P, Pasotti L, Patrini M. Antibacterial activity of glutathione-coated silver nanoparticles against Gram positive and Gram negative bacteria. Langmuir. 2012;28:8140-8. https://doi.org/10.1021/la3003838
  43. Hardes J, von Eiff C, Streitbuerger A, Balke M, Budny T, Henrichs MP, Hauschild G, Ahrens H. Reduction of periprosthetic infection with silvercoated megaprostheses in patients with bone sarcoma. J Surg Oncol. 2010;101:389-95.
  44. Schwarz F, Thorwarth G, Stritzker B. Synthesis of silver and copper nanoparticle containing a-C:Hby ion irradiation of polymers. Solid State Sci. 2009;11:1819-23. https://doi.org/10.1016/j.solidstatesciences.2009.05.012
  45. Du C, Su XW, Cui FZ, Zhu XD. Morphological behaviour of osteoblasts on diamond-like carbon coating and amorphous C-N film in organ culture. Biomaterials. 1998;19:651-8. https://doi.org/10.1016/S0142-9612(97)00159-2
  46. Love CA, Cook RB, Harvey TJ, Dearnley PA, Wood RJK. Diamond like carbon coatings for potential application in biological implants ,Aia review. Tribology Int. 2013;63:141-50. https://doi.org/10.1016/j.triboint.2012.09.006
  47. Walter KC, Nastasi M, Munson C. Adherent diamond-like carbon coatings on metals via plasma source ion implantation. Surf Coat Technol. 1997;93:287-91. https://doi.org/10.1016/S0257-8972(97)00062-5
  48. Liu XY, Chu PK, Ding CX. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R-Rep. 2004;47:49-121. https://doi.org/10.1016/j.mser.2004.11.001
  49. Mandl S, Krause D, Thorwarth G, Sader R, Zeilhofer F, Horch HH, Rauschenbach B. Plasma immersion ion implantation treatment of medical implants. Surf Coatings Technol. 2001;142-144:1046-50. https://doi.org/10.1016/S0257-8972(01)01066-0
  50. Riley DK, Classen DC, Stevens LE, Burke JP. A large randomized clinical trial of a silver-impregnated urinary catheter: lack of efficacy and staphylococcal superinfection. Am J Med. 1995;98:349-56. https://doi.org/10.1016/S0002-9343(99)80313-1
  51. Flores CY, Minan AG, Grillo CA, Salvarezza RC, Vericat C, Schilardi PL. Citratecapped silver nanoparticles showing good bactericidal effect against both planktonic and sessile bacteria and a low cytotoxicity to osteoblastic cells. ACS Appl Mater Interfaces. 2013;5:3149-59. https://doi.org/10.1021/am400044e
  52. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007;3:95-101. https://doi.org/10.1016/j.nano.2006.12.001
  53. Harrasser N, Jussen S, Banke IJ, Kmeth R, von Eisenhart-Rothe R, Stritzker B, Gollwitzer H, Burgkart R. Antibacterial efficacy of titanium-containing alloy with silver-nanoparticles enriched diamond-like carbon coatings. AMB Express. 2015;5:77. https://doi.org/10.1186/s13568-015-0162-z

피인용 문헌

  1. Mussel-inspired deposition of copper on titanium for bacterial inhibition and enhanced osseointegration in a periprosthetic infection model vol.7, pp.81, 2017, https://doi.org/10.1039/c7ra10203h
  2. Emerging Nanomedicine Therapies to Counter the Rise of Methicillin-Resistant Staphylococcus aureus vol.11, pp.2, 2016, https://doi.org/10.3390/ma11020321
  3. Production and mechanical properties of Ti-5Al-2.5Fe- x Cu alloys for biomedical applications vol.13, pp.2, 2018, https://doi.org/10.1088/1748-605x/aa957d
  4. Surface Characterization and Copper Release of a-C:H:Cu Coatings for Medical Applications vol.9, pp.2, 2016, https://doi.org/10.3390/coatings9020119
  5. Preliminary Study of Ge-DLC Nanocomposite Biomaterials Prepared by Laser Codeposition vol.9, pp.3, 2019, https://doi.org/10.3390/nano9030451
  6. TiCaPCON-Supported Pt- and Fe-Based Nanoparticles and Related Antibacterial Activity vol.11, pp.32, 2016, https://doi.org/10.1021/acsami.9b09649
  7. Evaluation of Antibacterial and Cytotoxic Properties of a Fluorinated Diamond-Like Carbon Coating for the Development of Antibacterial Medical Implants vol.9, pp.8, 2016, https://doi.org/10.3390/antibiotics9080495
  8. Titanium and Other Metal Hypersensitivity Diagnosed by MELISA® Test: Follow-Up Study vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/5512091
  9. Antimicrobial Properties of the Ag, Cu Nanoparticle System vol.10, pp.2, 2021, https://doi.org/10.3390/biology10020137
  10. A novel Cu-doped high entropy alloy with excellent comprehensive performances for marine application vol.69, pp.None, 2021, https://doi.org/10.1016/j.jmst.2020.08.016
  11. Bactericidal surfaces: An emerging 21st-century ultra-precision manufacturing and materials puzzle vol.8, pp.2, 2016, https://doi.org/10.1063/5.0028844
  12. Amorphous Carbon Coatings for Total Knee Replacements-Part II: Tribological Behavior vol.13, pp.11, 2016, https://doi.org/10.3390/polym13111880
  13. Amorphous Carbon Coatings for Total Knee Replacements-Part I: Deposition, Cytocompatibility, Chemical and Mechanical Properties vol.13, pp.12, 2021, https://doi.org/10.3390/polym13121952
  14. Surface Engineering Strategies to Enhance the In Situ Performance of Medical Devices Including Atomic Scale Engineering vol.22, pp.21, 2021, https://doi.org/10.3390/ijms222111788
  15. A critical assessment on biochemical and molecular mechanisms of toxicity developed by emerging nanomaterials on important microbes vol.16, pp.None, 2016, https://doi.org/10.1016/j.enmm.2021.100485