DOI QR코드

DOI QR Code

Direct photo-patterning on anthracene containing polymer for guiding stem cell adhesion

  • You, Jungmok (Department of Plant & Environmental New Resources, Kyung Hee University) ;
  • Heo, June Seok (Cell Therapy Center, Severance Hospital, Yonsei University College of Medicine) ;
  • Kim, Hyun Ok (Cell Therapy Center, Severance Hospital, Yonsei University College of Medicine) ;
  • Kim, Eunkyoumg (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • Received : 2016.06.08
  • Accepted : 2016.07.26
  • Published : 2016.09.01

Abstract

Background: Various micropatterned surfaces capable of guiding the selective adhesion of biomolecules such as proteins and cells are of great interests in biosensor, diagnostics, drug screening, and tissue engineering. In this study, we described a simple photo-patterning method to prepare micro-patterned films for stem cell patterning using anthracene containing polymers (PMAn). This micro patterned polymer film was prepared by the facile photo-reaction of anthracene units in polymer backbone structure. Results: The UV irradiation of PMAn through a photomask resulted in the quenching of fluorescent intensity as well as the changes in surface wettability from hydrophobic to hydrophilic surface. As a result, UV exposed regions of PMAn film show lower fluorescent intensity as well as higher proliferation rate of mesenchymal stem cells (MSCs) than unexposed region of PMAn film. Furthermore, the selective MSC attachment was clearly observed in the UV exposed regions of PMAn film. Conclusion: We developed a simple cell patterning method with a fluorescent, biocompatible, and patternable polymer film containing anthracene units. This method provides a facile stem cell patterning method and could be extended to various patterning of biomaterials without labor-intensive preparation and no pre-treatment for complex interactions of cell-microenvironment.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRT), Korea Health Industry Development Institute (KHIDI)

References

  1. Allcock H, Phelps M, Barrett E, Pishko M, Koh W. Photolithographic development of polyphosphazene hydrogels for potential use in microarray biosensors. Chem Mater. 2006;18:609-13. https://doi.org/10.1021/cm050316b
  2. You J, Shin D, Revzin A. Development of micropatterned cell-sensing surfaces. Methods in Cell Biology. Methods Cell Biol. 2014;121:75-90.
  3. Singhvi R, Kumar A, Lopez GP, Stephanopoulos GN, Wang DIC, Whitesides GM, Ingber DE. Engineering cell shape and function. Science. 1994;264:696-8. https://doi.org/10.1126/science.8171320
  4. Chen C, Bang S, Cho Y, Lee S, Lee I, Zhang S, Noh I. Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone. Biomater Res. 2016;20:10-6. https://doi.org/10.1186/s40824-016-0057-3
  5. Khademhosseini A, Langer R, Borenstein J, Vacanti JP. Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci U S A. 2006;103:2480-87. https://doi.org/10.1073/pnas.0507681102
  6. Kim SY, Kang JH, Seo WS, Lee SW, Oh NS, Cho HK, Le MH. Effect of topographical control by a micro-molding process on the activity of human mesenchymal stem cells on alumina ceramics. Biomater Res. 2015;19:23-32. https://doi.org/10.1186/s40824-015-0045-z
  7. Garnier F, Hadjlaoui R, Yasser A, Srivastava P. All-polymer field-effect transistor realized by printing techniques. Science. 1994;265:1684-6. https://doi.org/10.1126/science.265.5179.1684
  8. He W, Halberstadt CR, Gonsalves KE. Lithography application of a novel photoresist for patterning of cells. Biomaterials. 2004;25:2055-63. https://doi.org/10.1016/j.biomaterials.2003.08.055
  9. Sorribas H, Padeste C, Tiefenauer L. Photolithographic generation of protein micropatterns for neuron culture applications. Biomaterials. 2002;23:893-900. https://doi.org/10.1016/S0142-9612(01)00199-5
  10. Pogantsch A, Trattnig G, Langer G, Kern W, Scherf U, Tillmann H, Horhold HH, Zojer E. Multicolor organic electroluminescent devices fabricated by a reductive photo-patterning method. Adv Mater. 2002;14:1722-5. https://doi.org/10.1002/1521-4095(20021203)14:23<1722::AID-ADMA1722>3.0.CO;2-7
  11. Pogantsch A, Rentenberger S, Langer G, Keplinger J, Kern W, Zojer E. Tuning the electroluminescence color in polymer light-emitting devices using the thiol-ene photoreaction. Adv Funct Mater. 2005;15:403-9. https://doi.org/10.1002/adfm.200305146
  12. Revzin A, Tompkins RG, Toner M. Surface engineering with poly(ethylene glycol) photolithography to create high-density cell arrays on glass. Langmuir. 2003;19:9855-62. https://doi.org/10.1021/la035129b
  13. You J, Raghunathan KJ, Son KJ, Patel D, Haque A, Murphy C, Revzin A. The impact of topographic cues, heparin hydrogel microstructures and encapsulated fibroblasts on phenotype of primary hepatocytes. ACS Appl Mater Interfaces. 2015;7:12299-308. https://doi.org/10.1021/am504614e
  14. You J, Shin D, Patel D, Gao Y, Revzin A. Multilayered heparin hydrogel microwells for cultivation of primary hepatocytes. Adv Healthc Mater. 2014;3:126-32. https://doi.org/10.1002/adhm.201300054
  15. Seo JH, Shin D, Mukundan P, Revzin A. Attachment of hydrogel microstructures and proteins to glass via thiol-terminated silanes. Colloids Surf B Biointerfaces. 2012;98:1-6. https://doi.org/10.1016/j.colsurfb.2012.03.025
  16. Bhuvana T, Kim B, Yang X, Shin H, Kim E. Reversible full color generation with yellow electrochromic polymer patterns. Angew Chem Int Ed. 2013;52:1180-4. https://doi.org/10.1002/anie.201205206
  17. Kim Y, Kim E. Conductive polymer patterning on a photoswitching polymer layer. Macromol Res. 2006;14:584-7. https://doi.org/10.1007/BF03218728
  18. Rickard JJS, Farrer I, Oppenheimer PG. Tunable nanopatterning of conductive polymers via electrohydrodynamic lithography. ACS Nano. 2016;10:3865-70. https://doi.org/10.1021/acsnano.6b01246
  19. Cho J, Anandakathir R, Kumar A, Kumar J, Kurup PU. Sensitive and fast recognition of explosives using fluorescent polymer sensors and pattern recognition analysis. Sensors Actuators B. 2011;160:1237-43. https://doi.org/10.1016/j.snb.2011.09.055
  20. Kim J, You J, Kim B, Park T, Kim E. Solution processable and patternable poly(3,4-alkylenedioxy-thiophene)s for large area electrochromic. Adv Mater. 2011;23:4168-73. https://doi.org/10.1002/adma.201101900
  21. Lee J, You J, Kim E. A triazine bridged p-phenylenevinylene polymer film for biomolecular patterning. J Nanosci Nanotechnol. 2011;11:4439-43. https://doi.org/10.1166/jnn.2011.3661
  22. Kim J, You J, Kim E. Flexible conductive polymer patterns from vapor polymerizable and photo cross-linkable EDOT. Macromolecules. 2010;43:2322-7. https://doi.org/10.1021/ma9025306
  23. You J, Heo JS, Lee J, Kim HS, Kim HO, Kim E. A fluorescent polymer for patterning of mesenchymal stem cells. Macromolecules. 2009;42:3326-32. https://doi.org/10.1021/ma802722q
  24. Wells LA, Brook MA, Sheardown H. Generic, Anthracene-Based Hydrogel Crosslinkers for Photo-controllable Drug Delivery. Macromol Biosci. 2011;11:988-98. https://doi.org/10.1002/mabi.201100001
  25. Jin Q, Mitschang F, Agarwall S. Biocompatible drug delivery system for photo-triggered controlled release of 5-fluorouracil. Biomacromolecules. 2011;12:3684-91. https://doi.org/10.1021/bm2009125
  26. Rameshbabu K, Kim Y, Kwon T, Yoo J, Kim E. Facile one-pot synthesis of a photo patternable anthracene polymer. Tetrahedron Lett. 2007;48:4755-60. https://doi.org/10.1016/j.tetlet.2007.05.002
  27. Kim J, Anand C, Talapaneni SN, You J, Aldeyab SS, Kim E, Vinu A. Catalytic polymerization of anthracene in a recyclable SBA-15 reactor with high iron content by a Friedel-Crafts alkylation. Angew Chem Int Ed. 2012;51:2859-63. https://doi.org/10.1002/anie.201107145
  28. Kim YW, Chae KH. Effects of oxygen on the photochemical behaviors of methacrylic homopolymer containing anthracene groups. J Photosci. 2002;9:57-63.
  29. Rubio MA, Lissi EA. Photooxidation of anthracene derivatives in AOT/heptane reversed micelles. J Colloid Interface Sci. 1989;128:458-63. https://doi.org/10.1016/0021-9797(89)90361-5
  30. Sinigersky V, Mullen K, Klapper M, Schopov I. Photostructuring and consecutive doping of an anthracene-containing polymer: a new approach towards conductive patterns. Adv Mater. 2000;12:1058-60. https://doi.org/10.1002/1521-4095(200007)12:14<1058::AID-ADMA1058>3.0.CO;2-I
  31. Li T, Chen J, Mitsuishi M, Miyashita T. Photolithographic properties of ultrathin polymer Langmuir-Blodgett films containing anthracene moieties. J Mater Chem. 2003;13:1565-69. https://doi.org/10.1039/B300686G
  32. Mitchell SA, Davidson MR, Bradley RH. J. Improved cellular adhesion to acetone plasma modified polystyrene surfaces. Colloid Interface Sci. 2005;281:122-9. https://doi.org/10.1016/j.jcis.2004.08.049
  33. Sommani P, Tsuji H, Sato H, Hattori M, Yamada T, Gotoh Y, Ishikawa J. Mesenchymal stem cell attachment properties on silicone rubber modified by carbon negative-ion implantation. Trans Mater Res Soc Jpn. 2007;32:921-4.

Cited by

  1. Erratum to: Direct photo-patterning on anthracene containing polymer for guiding stem cell adhesion vol.20, pp.1, 2016, https://doi.org/10.1186/s40824-016-0075-1
  2. Integrating shape-memory technology and photo-imaging on a polymer platform for a high-security information storage medium vol.6, pp.39, 2016, https://doi.org/10.1039/c8tc03504k
  3. Photo-writing self-erasable phosphorescent images using poly(N-vinyl-2-pyrrolidone) as a photochemically deoxygenating matrix vol.55, pp.30, 2016, https://doi.org/10.1039/c9cc01388a
  4. Fragmentation of polymer nanocomposites: modulation by dry and wet weathering, fractionation, and nanomaterial filler vol.7, pp.6, 2016, https://doi.org/10.1039/c9en01360a
  5. Stimuli‐responsive mechanical properties in polymer glasses: challenges and opportunities for defense applications vol.70, pp.6, 2016, https://doi.org/10.1002/pi.6154