DOI QR코드

DOI QR Code

Solid organ fabrication: comparison of decellularization to 3D bioprinting

  • Jung, Jangwook P. (Department of Biomedical Engineering, University of Minnesota - Twin Cities) ;
  • Bhuiyan, Didarul B. (Department of Biomedical Engineering, University of Minnesota - Twin Cities) ;
  • Ogle, Brenda M. (Department of Biomedical Engineering, University of Minnesota - Twin Cities)
  • 투고 : 2016.04.12
  • 심사 : 2016.08.02
  • 발행 : 2016.09.01

초록

Solid organ fabrication is an ultimate goal of Regenerative Medicine. Since the introduction of Tissue Engineering in 1993, functional biomaterials, stem cells, tunable microenvironments, and high-resolution imaging technologies have significantly advanced efforts to regenerate in vitro culture or tissue platforms. Relatively simple flat or tubular organs are already in (pre)clinical trials and a few commercial products are in market. The road to more complex, high demand, solid organs including heart, kidney and lung will require substantive technical advancement. Here, we consider two emerging technologies for solid organ fabrication. One is decellularization of cadaveric organs followed by repopulation with terminally differentiated or progenitor cells. The other is 3D bioprinting to deposit cell-laden bio-inks to attain complex tissue architecture. We reviewed the development and evolution of the two technologies and evaluated relative strengths needed to produce solid organs, with special emphasis on the heart and other tissues of the cardiovascular system.

키워드

과제정보

연구 과제 주관 기관 : National Science Foundation

참고문헌

  1. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920-6. https://doi.org/10.1126/science.8493529
  2. Jung JP, Squirrell JM, Lyons GE, Eliceiri KW, Ogle BM. Imaging cardiac extracellular matrices: a blueprint for regeneration. Trends Biotech. 2012;30:233-40. https://doi.org/10.1016/j.tibtech.2011.12.001
  3. Hanson KP, Jung JP, Tran QA, Hsu S-PP, Iida R, Ajeti V, Campagnola PJ, Eliceiri KW, Squirrell JM, Lyons GE, et al. Spatial and temporal analysis of extracellular matrix proteins in the developing murine heart: a blueprint for regeneration. Tissue Eng Part A. 2012;19:1132-43.
  4. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotech. 2014;32:773-85. https://doi.org/10.1038/nbt.2958
  5. O'Brien CM, Holmes B, Faucett S, Zhang LG. Three-dimensional printing of nanomaterial scaffolds for complex tissue regeneration. Tissue Eng Part B. 2014;21:103-14.
  6. Studart AR. Additive manufacturing of biologically-inspired materials. Chem Soc Rev. 2016;45:359-76. https://doi.org/10.1039/C5CS00836K
  7. Jungst T, Smolan W, Schacht K, Scheibel T, Groll J. Strategies and molecular design criteria for 3D printable hydrogels. Chem Rev. 2016;116:1496-539. https://doi.org/10.1021/acs.chemrev.5b00303
  8. Jose RR, Rodriquez MJ, Dixon TA, Omenetto FG, Kaplan DL. Evolution of Bioinks and Additive Manufacturing Technologies for 3D Bioprinting. ACS Biomat Sci Eng. 2016; doi: 10.1021/acsbiomaterials.6b00088.
  9. Guvendiren M, Molde J, Soares RMD, Kohn J. Designing Biomaterials for 3D Printing. ACS Biomat Sci Eng. 2016; doi: 10.1021/acsbiomaterials.6b00121.
  10. Gudapati H, Dey M, Ozbolat I. A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials. 2016;102:20-42. https://doi.org/10.1016/j.biomaterials.2016.06.012
  11. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27:3675-83.
  12. Badylak SF, Record R, Lindberg K, Hodde J, Park K. Small intestinal submucosa: a substrate for in vitro cell growth. J Biomat Sci Polym Edn. 1998;9:863-78. https://doi.org/10.1163/156856298X00208
  13. Ott HC, Matthiesen TS, Goh S-K, Black LD, Kren SM, Netoff TI, Taylor DA. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat Med. 2008;14:213-21. https://doi.org/10.1038/nm1684
  14. Song JJ, Ott HC. Organ engineering based on decellularized matrix scaffolds. Trends Mol Med. 2011;17:424-32. https://doi.org/10.1016/j.molmed.2011.03.005
  15. Caralt M, Uzarski JS, Iacob S, Obergfell KP, Berg N, Bijonowski BM, Kiefer KM, Ward HH, Wandinger-Ness A, Miller WM, et al. Optimization and critical evaluation of decellularization strategies to develop renal extracellular matrix scaffolds as biological templates for organ engineering and transplantation. Am J Transplant. 2015;15:64-75. https://doi.org/10.1111/ajt.12999
  16. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145-7. https://doi.org/10.1126/science.282.5391.1145
  17. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663-76. https://doi.org/10.1016/j.cell.2006.07.024
  18. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917-20. https://doi.org/10.1126/science.1151526
  19. Ng SLJ, Narayanan K, Gao S, Wan ACA. Lineage restricted progenitors for the repopulation of decellularized heart. Biomaterials. 2011;32:7571-80. https://doi.org/10.1016/j.biomaterials.2011.06.065
  20. Lu T-Y, Lin B, Kim J, Sullivan M, Tobita K, Salama G, Yang L. Repopulation of decellularized mouse heart with human induced pluripotent stem cellderived cardiovascular progenitor cells. Nat Commun. 2013;4:2307. https://doi.org/10.1038/ncomms3307
  21. Guyette JP, Charest JM, Mills RW, Jank BJ, Moser PT, Gilpin SE, Gershlak JR, Okamoto T, Gonzalez G, Milan DJ, et al. Bioengineering human myocardium on native extracellular matrix. Circ Res. 2016;118:56-72. https://doi.org/10.1161/CIRCRESAHA.115.306874
  22. Warren L, Manos PD, Ahfeldt T, Loh Y-H, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010;7:618-30. https://doi.org/10.1016/j.stem.2010.08.012
  23. Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, Raval KK, Zhang J, Kamp TJ, Palecek SP. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci. 2012;109:E1848-57. https://doi.org/10.1073/pnas.1200250109
  24. Uygun BE, Soto-Gutierrez A, Yagi H, Izamis ML, Guzzardi MA, Shulman C, Milwid J, Kobayashi N, Tilles A, Berthiaume F, et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med. 2010;16:814-20. https://doi.org/10.1038/nm.2170
  25. Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med. 2013;19:646-51. https://doi.org/10.1038/nm.3154
  26. Moroni F, Mirabella T. Decellularized matrices for cardiovascular tissue engineering. Am J Stem Cell. 2014;3:1-20.
  27. Watson SP. Platelet activation by extracellular matrix proteins in haemostasis and thrombosis. Curr Pharm Des. 2009;15:1358-72. https://doi.org/10.2174/138161209787846702
  28. Zopf DA, Hollister SJ, Nelson ME, Ohye RG, Green GE. Bioresorbable airway splint created with a three-dimensional printer. New Eng J Med. 2013;368:2043-5. https://doi.org/10.1056/NEJMc1206319
  29. Kang H-W, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotech. 2016;34:312-9. https://doi.org/10.1038/nbt.3413
  30. Moon S, Hasan SK, Song YS, Xu F, Keles HO, Manzur F, Mikkilineni S, Hong JW, Nagatomi J, Haeggstrom E, et al. Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets. Tissue Eng Part C. 2009;16:157-66.
  31. Xu T, Jin J, Gregory C, Hickman JJ, Boland T. Inkjet printing of viable mammalian cells. Biomaterials. 2005;26:93-9. https://doi.org/10.1016/j.biomaterials.2004.04.011
  32. Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotech. 2005;23:47-55. https://doi.org/10.1038/nbt1055
  33. Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR. Organ printing: tissue spheroids as building blocks. Biomaterials. 2009;30:2164-74. https://doi.org/10.1016/j.biomaterials.2008.12.084
  34. Norotte C, Marga F, Niklason L, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials. 2009;30:5910-7. https://doi.org/10.1016/j.biomaterials.2009.06.034
  35. Ajeti V, Lien CH, Chen SJ, Su PJ, Squirrell JM, Molinarolo KH, Lyons GE, Eliceiri KW, Ogle BM, Campagnola PJ. Image-inspired 3D multiphoton excited fabrication of extracellular matrix structures by modulated raster scanning. Opt Express. 2013;21:25346-55. https://doi.org/10.1364/OE.21.025346
  36. Xu T, Zhao W, Zhu J-M, Albanna MZ, Yoo JJ, Atala A. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials. 2013;34:130-9. https://doi.org/10.1016/j.biomaterials.2012.09.035
  37. Gaetani R, Feyen DAM, Verhage V, Slaats R, Messina E, Christman KL, Giacomello A, Doevendans PAFM, Sluijter JPG. Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials. 2015;61:339-48. https://doi.org/10.1016/j.biomaterials.2015.05.005
  38. Hahn MS, Miller JS, West JL. Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Adv Mater. 2006;18:2679-84. https://doi.org/10.1002/adma.200600647
  39. Culver JC, Hoffmann JC, Poche RA, Slater JH, West JL, Dickinson ME. Threedimensional biomimetic patterning in hydrogels to guide cellular organization. Adv Mater. 2012;24:2344-8. https://doi.org/10.1002/adma.201200395
  40. Ma X, Qu X, Zhu W, Li Y-S, Yuan S, Zhang H, Liu J, Wang P, Lai CSE, Zanella F, et al. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci. 2016;113:2206-11. https://doi.org/10.1073/pnas.1524510113
  41. Su P-J, Tran QA, Fong JJ, Eliceiri KW, Ogle BM, Campagnola PJ. Mesenchymal stem cell interactions with 3D ECM modules fabricated via multiphoton excited photochemistry. Biomacromolecules. 2012;13:2917-25. https://doi.org/10.1021/bm300949k
  42. Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen D-HT, Cohen DM, Toro E, Chen AA, Galie PA, Yu X, et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater. 2012;11:768-74. https://doi.org/10.1038/nmat3357
  43. Sooppan R, Paulsen SJ, Han J, Ta AH, Dinh P, Gaffey AC, Venkataraman C, Trubelja A, Hung G, Miller JS, et al. In vivo anastomosis and perfusion of a three-dimensionally-printed construct containing microchannel networks. Tissue Eng Part C. 2016;22:1-7.
  44. Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater. 2014;26:3124-30. https://doi.org/10.1002/adma.201305506
  45. Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA. Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci. 2016;113:3179-84. https://doi.org/10.1073/pnas.1521342113
  46. Hinton TJ, Jallerat Q, Palchesko RN, Park JH, Grodzicki MS, Shue H-J, Ramadan MH, Hudson AR, Feinberg AW. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv. 2015;1:e1500758. https://doi.org/10.1126/sciadv.1500758
  47. Seif-Naraghi SB, Singelyn JM, Salvatore MA, Osborn KG, Wang JJ, Sampat U, Kwan OL, Strachan GM, Wong J, Schup-Magoffin PJ, et al. Safety and efficacy of an injectable extracellular matrix hydrogel for treating myocardial infarction. Sci Transl Med. 2013;5:173ra125.
  48. Singelyn JM, Sundaramurthy P, Johnson TD, Schup-Magoffin PJ, Hu DP, Faulk DM, Wang J, Mayle KM, Bartels K, Salvatore M, et al. Catheterdeliverable hydrogel derived from decellularized ventricular extracellular matrix increases endogenous cardiomyocytes and preserves cardiac function post-myocardial infarction. J Am Col Cardiol. 2012;59:751-63. https://doi.org/10.1016/j.jacc.2011.10.888
  49. Wainwright JM, Czajka CA, Patel UB, Freytes DO, Tobita K, Gilbert TW, Badylak SF. Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue Eng Part C. 2010;16:525-32. https://doi.org/10.1089/ten.tec.2009.0392
  50. Pati F, Jang J, Ha D-H, Won Kim S, Rhie J-W, Shim J-H, Kim D-H, Cho D-W. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5:3935. https://doi.org/10.1038/ncomms4935
  51. Pati F, Ha D-H, Jang J, Han HH, Rhie J-W, Cho D-W. Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials. 2015;62:164-75. https://doi.org/10.1016/j.biomaterials.2015.05.043
  52. Jang J, Kim TG, Kim BS, Kim S-W, Kwon S-M, Cho D-W. Tailoring mechanical properties of decellularized extracellular matrix bioink by vitamin B2- induced photo-crosslinking. Acta Biomat. 2016;33:88-95. https://doi.org/10.1016/j.actbio.2016.01.013
  53. Mannoor MS, Jiang Z, James T, Kong YL, Malatesta KA, Soboyejo WO, Verma N, Gracias DH, McAlpine MC. 3D printed bionic ears. Nano Lett. 2013;13:2634-9. https://doi.org/10.1021/nl4007744
  54. Feiner R, Engel L, Fleischer S, Malki M, Gal I, Shapira A, Shacham-Diamand Y, Dvir T. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function. Nat Mater. 2016;15:679-85. https://doi.org/10.1038/nmat4590
  55. Park J, Choi S, Janardhan AH, Lee S-Y, Raut S, Soares J, Shin K, Yang S, Lee C, Kang K-W, et al. Electromechanical cardioplasty using a wrapped elastoconductive epicardial mesh. Sci Transl Med. 2016;8:344ra386.
  56. Mirmalek-Sani S-H, Sullivan DC, Zimmerman C, Shupe TD, Petersen BE. Immunogenicity of decellularized porcine liver for bioengineered hepatic tissue. Ame J Pathol. 2013;183:558-65. https://doi.org/10.1016/j.ajpath.2013.05.002
  57. Badylak SF, Valentin JE, Ravindra AK, McCabe GP, Stewart-Akers AM. Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng Part A. 2008;14:1835-42. https://doi.org/10.1089/ten.tea.2007.0264
  58. Mora-Solano C, Collier JH. Engaging adaptive immunity with biomaterials. J Mater Chem B. 2014;2:2409-21. https://doi.org/10.1039/C3TB21549K
  59. Allman AJ, McPherson TB, Badylak SF, Merrill LC, Kallakury B, Sheehan C, Raeder RH, Metzger DW. Xenogeneic extracellular matrix grafts elicit a TH2-restricted immune response. Transplantation. 2001;71:1631-40. https://doi.org/10.1097/00007890-200106150-00024
  60. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11:889-96. https://doi.org/10.1038/ni.1937
  61. Xu H, Wan H, Sandor M, Qi S, Ervin F, Harper JR, Silverman RP, McQuillan DJ. Host response to human acellular dermal matrix transplantation in a primate model of abdominal wall repair. Tissue Eng Part A. 2008;14:2009-19. https://doi.org/10.1089/ten.tea.2007.0316
  62. Do A-V, Khorsand B, Geary SM, Salem AK. 3D printing of scaffolds for tissue regeneration applications. Adv Healthcare Mater. 2015;4:1742-62. https://doi.org/10.1002/adhm.201500168
  63. Neofytou E, O'Brien CG, Couture LA, Wu JC. Hurdles to clinical translation of human induced pluripotent stem cells. J Clin Invest. 2015;125:2551-7. https://doi.org/10.1172/JCI80575
  64. Eng G, Lee BW, Protas L, Gagliardi M, Brown K, Kass RS, Keller G, Robinson RB, Vunjak-Novakovic G. Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes. Nat Commun. 2016;7:10312. https://doi.org/10.1038/ncomms10312
  65. Godier-Furnemont AF, Tiburcy M, Wagner E, Dewenter M, Lammle S, El-Armouche A, Lehnart SE, Vunjak-Novakovic G, Zimmermann WH. Physiologic force-frequency response in engineered heart muscle by electromechanical stimulation. Biomaterials. 2015;60:82-91. https://doi.org/10.1016/j.biomaterials.2015.03.055
  66. Tibbits S. 4D printing: multi-material shape change. Archite Design. 2014;84:116-21.
  67. Choi J, Kwon OC, Jo W, Lee HJ, Moon M-W. 4D printing technology: a review. 3D Printing and Additive Manufacturing. 2015;2:159-67. https://doi.org/10.1089/3dp.2015.0039
  68. Rosales AM, Anseth KS. The design of reversible hydrogels to capture extracellular matrix dynamics. Nat Rev Mater. 2016;1:15012. https://doi.org/10.1038/natrevmats.2015.12
  69. Gladman AS, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA. Biomimetic 4D printing. Nat Mater. 2016;15:413-8. https://doi.org/10.1038/nmat4544

피인용 문헌

  1. 3D-Printing: Applications in Cardiovascular Imaging vol.5, pp.9, 2016, https://doi.org/10.1007/s40134-017-0239-3
  2. The Rapidly Evolving Concept of Whole Heart Engineering vol.2017, pp.None, 2017, https://doi.org/10.1155/2017/8920940
  3. 3D Printing of Organs-On-Chips vol.4, pp.1, 2016, https://doi.org/10.3390/bioengineering4010010
  4. 3D bioprinting using stem cells vol.83, pp.1, 2016, https://doi.org/10.1038/pr.2017.252
  5. Mechanotransduction in tumor progression: The dark side of the force vol.217, pp.5, 2018, https://doi.org/10.1083/jcb.201701039
  6. Decellularization of placentas: establishing a protocol vol.51, pp.1, 2016, https://doi.org/10.1590/1414-431x20176382
  7. Human Pulmonary 3D Models For Translational Research vol.13, pp.1, 2016, https://doi.org/10.1002/biot.201700341
  8. Synthesis and characterizations of alginate- α -tricalcium phosphate microparticle hybrid film with flexibility and high mechanical property as a biomaterial vol.13, pp.2, 2016, https://doi.org/10.1088/1748-605x/aa8fa1
  9. Body builder: from synthetic cells to engineered tissues vol.54, pp.None, 2018, https://doi.org/10.1016/j.ceb.2018.04.010
  10. Recent trends in bioinks for 3D printing vol.22, pp.1, 2016, https://doi.org/10.1186/s40824-018-0122-1
  11. Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): guidelines for medical 3D printing and appropriateness for clinical scenarios vol.4, pp.1, 2016, https://doi.org/10.1186/s41205-018-0030-y
  12. Applications of decellularized extracellular matrix in bone and cartilage tissue engineering vol.4, pp.1, 2016, https://doi.org/10.1002/btm2.10110
  13. Engineering Tissue Fabrication With Machine Intelligence: Generating a Blueprint for Regeneration vol.7, pp.None, 2016, https://doi.org/10.3389/fbioe.2019.00443
  14. Can tissue engineering produce bioartificial organs for transplantation? vol.43, pp.6, 2016, https://doi.org/10.1111/aor.13443
  15. Recent Trends in Decellularized Extracellular Matrix Bioinks for 3D Printing: An Updated Review vol.20, pp.18, 2016, https://doi.org/10.3390/ijms20184628
  16. Digital Design and Automated Fabrication of Bespoke Collagen Microfiber Scaffolds vol.25, pp.11, 2016, https://doi.org/10.1089/ten.tec.2018.0379
  17. Review of mechanisms and deformation behaviors in 4D printing vol.105, pp.11, 2016, https://doi.org/10.1007/s00170-019-03871-3
  18. Processing of collagen based biomaterials and the resulting materials properties vol.18, pp.None, 2019, https://doi.org/10.1186/s12938-019-0647-0
  19. Recent Applications of Three Dimensional Printing in Cardiovascular Medicine vol.9, pp.3, 2016, https://doi.org/10.3390/cells9030742
  20. Toward the New Generation of Surgical Meshes with 4D Response: Soft, Dynamic, and Adaptable vol.30, pp.36, 2016, https://doi.org/10.1002/adfm.202004145
  21. Review: Recent advancement and research possibilities in 4D printing technology vol.51, pp.10, 2016, https://doi.org/10.1002/mawe.202000008
  22. Bioprinting: From Tissue and Organ Development to in Vitro Models vol.120, pp.19, 2020, https://doi.org/10.1021/acs.chemrev.9b00789
  23. Three‐dimensional printing of extracellular matrix (ECM)‐mimicking scaffolds: A critical review of the current ECM materials vol.108, pp.12, 2020, https://doi.org/10.1002/jbm.a.36981
  24. Fabrication and properties of alginate/calcium phosphate hybrid beads: A comparative study vol.32, pp.1, 2016, https://doi.org/10.3233/bme-206012
  25. Utility of perfusion decellularization to achieve biochemical and mechanically accurate whole animal and organ‐specific tissue scaffolds vol.9, pp.6, 2016, https://doi.org/10.14814/phy2.14804
  26. Bioengineering lungs - current status and future prospects vol.21, pp.4, 2021, https://doi.org/10.1080/14712598.2021.1834534
  27. A review of biomimetic scaffolds for bone regeneration: Toward a cell‐free strategy vol.6, pp.2, 2016, https://doi.org/10.1002/btm2.10206
  28. Bioinks-materials used in printing cells in designed 3D forms vol.32, pp.8, 2021, https://doi.org/10.1080/09205063.2021.1892470
  29. Recent advances on bioengineering approaches for fabrication of functional engineered cardiac pumps: A review vol.280, pp.None, 2016, https://doi.org/10.1016/j.biomaterials.2021.121298