DOI QR코드

DOI QR Code

Bio-inspired strategies for designing antifouling biomaterials

  • Damodaran, Vinod B. (New Jersey Center for Biomaterials, Rutgers - The State University of New Jersey) ;
  • Murthy, N. Sanjeeva (New Jersey Center for Biomaterials, Rutgers - The State University of New Jersey)
  • 투고 : 2016.03.18
  • 심사 : 2016.06.02
  • 발행 : 2016.09.01

초록

Contamination of biomedical devices in a biological medium, biofouling, is a major cause of infection and is entirely avoidable. This mini-review will coherently present the broad range of antifouling strategies, germicidal, preventive and cleaning using one or more of biological, chemical and physical techniques. These techniques will be discussed from the point of view of their ability to inhibit protein adsorption, usually the first step that eventually leads to fouling. Many of these approaches draw their inspiration from nature, such as emulating the nitric oxide production in endothelium, use of peptoids that mimic protein repellant peptides, zwitterionic functionalities found in membrane structures, and catechol functionalities used by mussel to immobilize poly(ethylene glycol) (PEG). More intriguing are the physical modifications, creation of micropatterns on the surface to control the hydration layer, making them either superhydrophobic or superhydrophilic. This has led to technologies that emulate the texture of shark skin, and the superhyprophobicity of self-cleaning textures found in lotus leaves. The mechanism of antifouling in each of these methods is described, and implementation of these ideas is illustrated with examples in a way that could be adapted to prevent infection in medical devices.

키워드

참고문헌

  1. Chan J, Wong S. Biofouling: Types, Impact, and Anti-fouling. New York: Nova Science Publishers; 2010.
  2. Magill SS et al. Multistate point-prevalence survey of health care-associated infections. N Engl J Med. 2014;370(13):1198-208. https://doi.org/10.1056/NEJMoa1306801
  3. Lehman SM, Donlan RM. Bacteriophage-mediated control of a two-species biofilm formed by microorganisms causing catheter-associated urinary tract infections in an in vitro urinary catheter model. Antimicrob Agents Chemother. 2015;59(2):1127-37. https://doi.org/10.1128/AAC.03786-14
  4. Costerton JW, Montanaro L, Arciola CR. Biofilm in implant infections: Its production and regulation. Int J Artif Organs. 2005;28(11):1062. https://doi.org/10.1177/039139880502801103
  5. Banerjee I, Pangule RC, Kane RS. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater. 2011;23(6):690-718. https://doi.org/10.1002/adma.201001215
  6. Krishnan S, Weinman CJ, Ober CK. Advances in polymers for anti-biofouling surfaces. J Mater Chem. 2008;18(29):3405-13. https://doi.org/10.1039/b801491d
  7. Zhou F. Antifouling Surfaces and Materials. Berlin: Springer; 2014.
  8. Xiong Y, Liu Y. Biological control of microbial attachment: a promising alternative for mitigating membrane biofouling. Appl Microbiol Biotechnol. 2010;86(3):825-37. https://doi.org/10.1007/s00253-010-2463-0
  9. Malaeb L, et al. Do biological-based strategies hold promise to biofouling control in MBRs? Water Res. 2013;47(15):5447-63. https://doi.org/10.1016/j.watres.2013.06.033
  10. Salta M, et al. Designing biomimetic antifouling surfaces. Philos T Roy Soc A. 2010;368(1929):4729-54. https://doi.org/10.1098/rsta.2010.0195
  11. Bixler GD, Bhushan B. Biofouling: lessons from nature. Philos T Roy Soc A. 2012;370(1967):2381-417. https://doi.org/10.1098/rsta.2011.0502
  12. Bixler GD, et al. Anti-fouling properties of microstructured surfaces bioinspired by rice leaves and butterfly wings. J Colloid Interface Sci. 2014;419:114-33. https://doi.org/10.1016/j.jcis.2013.12.019
  13. Ignarro LJ, et al. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci. 1987;84(24):9265-9. https://doi.org/10.1073/pnas.84.24.9265
  14. Barraud N, et al. Involvement of nitric oxide in biofilm dispersal of pseudomonas aeruginosa. J Bacteriol. 2006;188(21):7344-53. https://doi.org/10.1128/JB.00779-06
  15. Damodaran VB, et al. S-Nitrosated biodegradable polymers for biomedical applications: synthesis, characterization and impact of thiol structure on the physicochemical properties. J Mater Chem. 2012;22(13):5990-6001. https://doi.org/10.1039/c2jm16554f
  16. Damodaran VB, Reynolds MM. Nitric oxide-releasing biomedical materials. In: Mishra MK, editor. Encyclopedia of biomedical polymers and polymeric biomaterials. NY: Taylor & Francis; 2015. doi:10.1081/E-EBPP-120049951.
  17. Damodaran VB, et al. Antithrombogenic properties of a nitric oxidereleasing dextran derivative: evaluation of platelet activation and whole blood clotting kinetics. RSC Advances. 2013;3(46):24406-14. https://doi.org/10.1039/c3ra45521a
  18. Liu N, et al. Nitric oxide regulation of cyclic di-GMP synthesis and hydrolysis in Shewanella woodyi. Biochemistry. 2012;51(10):2087-99. https://doi.org/10.1021/bi201753f
  19. Barnes RJ, et al. Nitric oxide treatment for the control of reverse osmosis membrane biofouling. Appl Environ Microbiol. 2015;81(7):2515-24. https://doi.org/10.1128/AEM.03404-14
  20. Brisbois EJ, et al. Reduction in thrombosis and bacterial adhesion with 7 day implantation of S-nitroso-N-acetylpenicillamine (SNAP)-doped Elast-eon E2As catheters in sheep. J Mater Chem B. 2015;3(8):1639-45. https://doi.org/10.1039/C4TB01839G
  21. Barraud N, et al. Cephalosporin-3'-diazeniumdiolates: targeted NO-donor prodrugs for dispersing bacterial biofilms. Angewandte Chemie. 2012;124(36):9191-4. https://doi.org/10.1002/ange.201202414
  22. Damodaran VB, et al. Enzymatically degradable nitric oxide releasing Snitrosated dextran thiomers for biomedical applications. J Mater Chem. 2012;22(43):23038-48. https://doi.org/10.1039/c2jm34834a
  23. Koh A, et al. Nitric oxide-releasing silica nanoparticle-doped polyurethane electrospun fibers. ACS Appl Mater Interfaces. 2013;5(16):7956-64. https://doi.org/10.1021/am402044s
  24. Colletta A, et al. S-Nitroso-N-acetylpenicillamine (SNAP) impregnated silicone foley catheters: a potential biomaterial/device to prevent catheterassociated urinary tract infections. ACS Biomaterials Science & Engineering. 2015;1(6):416-24. https://doi.org/10.1021/acsbiomaterials.5b00032
  25. Joslin JM, Damodaran VB, Reynolds MM. Selective nitrosation of modified dextran polymers. RSC Advances. 2013;3(35):15035-43. https://doi.org/10.1039/c3ra41988f
  26. Zaitseva J, et al. Effect of nitrofurans and NO generators on biofilm formation by Pseudomonas aeruginosa PAO1 and Burkholderia cenocepacia 370. Res Microbiol. 2009;160(5):353-7. https://doi.org/10.1016/j.resmic.2009.04.007
  27. Schmidt I, et al. Physiologic and proteomic evidence for a role of nitric oxide in biofilm formation by nitrosomonas europaea and other ammonia oxidizers. J Bacteriol. 2004;186(9):2781-8. https://doi.org/10.1128/JB.186.9.2781-2788.2004
  28. Arruebarrena Di Palma A, et al. Denitrification-derived nitric oxide modulates biofilm formation in Azospirillum brasilense. FEMS Microbiol Lett. 2013;338(1):77-85. https://doi.org/10.1111/1574-6968.12030
  29. Chelmowski R, et al. Peptide-based SAMs that resist the adsorption of proteins. J Am Chem Soc. 2008;130(45):14952-3. https://doi.org/10.1021/ja8065754
  30. Chen S, Cao Z, Jiang S. Ultra-low fouling peptide surfaces derived from natural amino acids. Biomaterials. 2009;30(29):5892-6. https://doi.org/10.1016/j.biomaterials.2009.07.001
  31. Leng C, et al. Surface structure and hydration of sequence-specific amphiphilic polypeptoids for antifouling/fouling release applications. Langmuir. 2015;31(34):9306-11. https://doi.org/10.1021/acs.langmuir.5b01440
  32. van Zoelen W, et al. Sequence of hydrophobic and hydrophilic residues in amphiphilic polymer coatings affects surface structure and marine antifouling/fouling release properties. ACS Macro Letters. 2014;3(4):364-8. https://doi.org/10.1021/mz500090n
  33. Perrino C, et al. A biomimetic alternative to poly(ethylene glycol) as an antifouling coating: resistance to nonspecific protein adsorption of poly(llysine)-graft-dextran. Langmuir. 2008;24(16):8850-6. https://doi.org/10.1021/la800947z
  34. Kim YD, Dordick JS, Clark DS. Siloxane-based biocatalytic films and paints for use as reactive coatings. Biotechnol Bioeng. 2001;72(4):475-82. https://doi.org/10.1002/1097-0290(20010220)72:4<475::AID-BIT1009>3.0.CO;2-F
  35. Mason JM. Design and development of peptides and peptide mimetics as antagonists for therapeutic intervention. Future Med Chem. 2010;2(12):1813-22. https://doi.org/10.4155/fmc.10.259
  36. Statz AR, et al. New peptidomimetic polymers for antifouling surfaces. J Am Chem Soc. 2005;127(22):7972-3. https://doi.org/10.1021/ja0522534
  37. Lin S, et al. Antifouling poly(${\beta}$-peptoid)s. Biomacromolecules. 2011;12(7):2573-82. https://doi.org/10.1021/bm200368p
  38. Chen S, et al. Surface hydration: principles and applications toward lowfouling/nonfouling biomaterials. Polymer. 2010;51(23):5283-93. https://doi.org/10.1016/j.polymer.2010.08.022
  39. Harris JM. Poly (ethylene glycol) chemistry: biotechnical and biomedical applications. Berlin: Springer Science & Business Media; 1992.
  40. Lusse S, Arnold K. The interaction of poly(ethylene glycol) with water studied by 1H and 2H NMR relaxation time measurements. Macromolecules. 1996;29(12):4251-7. https://doi.org/10.1021/ma9508616
  41. Oesterhelt F, Rief M, Gaub H. Single molecule force spectroscopy by AFM indicates helical structure of poly (ethylene-glycol) in water. New J Phys. 1999;1(1):6. https://doi.org/10.1088/1367-2630/1/1/006
  42. Aray Y, et al. Electrostatics for exploring the nature of the hydrogen bonding in polyethylene oxide hydration. J Phys Chem B. 2004;108(7):2418-24. https://doi.org/10.1021/jp036921o
  43. Kingshott P, et al. Covalent attachment of poly(ethylene glycol) to surfaces, critical for reducing bacterial adhesion. Langmuir. 2003;19(17):6912-21. https://doi.org/10.1021/la034032m
  44. Damodaran VB, Fee CJ, Popat KC. Prediction of protein interaction behaviour with PEG-grafted matrices using X-ray photoelectron spectroscopy. Appl Surf Sci. 2010;256(16):4894-901. https://doi.org/10.1016/j.apsusc.2010.02.088
  45. Ostuni E, et al. A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir. 2001;17(18):5605-20. https://doi.org/10.1021/la010384m
  46. Sung H-J, et al. Poly (ethylene glycol) as a sensitive regulator of cell survival fate on polymeric biomaterials: the interplay of cell adhesion and pro-oxidant signaling mechanisms. Soft Matter. 2010;6(20):5196-205. https://doi.org/10.1039/c0sm00172d
  47. Weber T, et al. Direct grafting of anti-fouling polyglycerol layers to steel and other technically relevant materials. Colloids Surf B Biointerfaces. 2013;111:360-6. https://doi.org/10.1016/j.colsurfb.2013.05.026
  48. Konradi R, Acikgoz C, Textor M. Polyoxazolines for nonfouling surface coatings - a direct comparison to the gold standard PEG. Macromol Rapid Commun. 2012;33(19):1663-76. https://doi.org/10.1002/marc.201200422
  49. Lopez AI, et al. Biofunctionalization of silicone polymers using poly(amidoamine) dendrimers and a mannose derivative for prolonged interference against pathogen colonization. Biomaterials. 2011;32(19):4336-46. https://doi.org/10.1016/j.biomaterials.2011.02.056
  50. Golander C-G, et al. Properties of immobilized PEG films and the interaction with proteins, in Poly (ethylene glycol) Chemistry. Berlin: Springer; 1992. p.221-45.
  51. Dalsin JL, et al. Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. J Am Chem Soc. 2003;125(14):4253-8. https://doi.org/10.1021/ja0284963
  52. Lee BP, et al. Mussel-inspired adhesives and coatings. Annu Rev Mater Res. 2011;41(1):99-132. https://doi.org/10.1146/annurev-matsci-062910-100429
  53. Li L, et al. Mussel-inspired antifouling coatings bearing polymer loops. Chem Commun. 2015;51(87):15780-3. https://doi.org/10.1039/C5CC06852E
  54. Kang T, et al. Mussel-inspired anchoring of polymer loops that provide superior surface lubrication and antifouling properties. ACS Nano. 2016;10(1):930-7. https://doi.org/10.1021/acsnano.5b06066
  55. Damodaran VB, et al. Zwitterionic polymeric materials. In: Mishra MK, editor. Encyclopedia of biomedical polymers and polymeric biomaterials. NY: Taylor & Francis; 2015. doi:10.1081/E-EBPP-120050037.
  56. Zwaal RFA, Schroit AJ. Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood. 1997;89(4):1121-32.
  57. Zwaal RFA, Comfurius P, Van Deenen LLM. Membrane asymmetry and blood coagulation. Nature. 1977;268(5618):358-60. https://doi.org/10.1038/268358a0
  58. Lewis AL. Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids Surf B Biointerfaces. 2000;18(3-4):261-75. https://doi.org/10.1016/S0927-7765(99)00152-6
  59. Hall B, et al. Biomembranes as models for polymer surfaces: V. Thrombelastographic studies of polymeric lipids and polyesters. Biomaterials. 1989;10(4):219-24. https://doi.org/10.1016/0142-9612(89)90096-3
  60. Hayward JA, et al. Biomembpanes as models for polymer surfaces. Biomaterials. 1986;7(2):126-31. https://doi.org/10.1016/0142-9612(86)90069-4
  61. Ishihara K, et al. Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 1. Surface characterization. Biomaterials. 1999;20(17):1545-51. https://doi.org/10.1016/S0142-9612(99)00052-6
  62. Kojima M, et al. Interaction between phospholipids and biocompatible polymers containing a phosphorylcholine moiety. Biomaterials. 1991;12(2):121-4. https://doi.org/10.1016/0142-9612(91)90189-H
  63. Willis SL, et al. A novel phosphorylcholine-coated contact lens for extended wear use. Biomaterials. 2001;22(24):3261-72. https://doi.org/10.1016/S0142-9612(01)00164-8
  64. Yang W, et al. Pursuing "zero" protein adsorption of poly(carboxybetaine) from undiluted blood serum and plasma. Langmuir. 2009;25(19):11911-6. https://doi.org/10.1021/la9015788
  65. Cheng G, et al. Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials. 2009;30(28):5234-40. https://doi.org/10.1016/j.biomaterials.2009.05.058
  66. Cheng G, et al. Integrated antimicrobial and nonfouling hydrogels to inhibit the growth of planktonic bacterial cells and keep the surface clean. Langmuir. 2010;26(13):10425-8. https://doi.org/10.1021/la101542m
  67. Cheng G, et al. A switchable biocompatible polymer surface with selfsterilizing and nonfouling capabilities. Angewandte Chemie. 2008;120(46):8963-6. https://doi.org/10.1002/ange.200803570
  68. Chang Y, et al. Hemocompatible mixed-charge copolymer brushes of pseudozwitterionic surfaces resistant to nonspecific plasma protein fouling. Langmuir. 2010;26(5):3522-30. https://doi.org/10.1021/la903172j
  69. Yang W, et al. Film thickness dependence of protein adsorption from blood serum and plasma onto poly(sulfobetaine)-grafted surfaces. Langmuir. 2008;24(17):9211-4. https://doi.org/10.1021/la801487f
  70. Li G, et al. Ultra low fouling zwitterionic polymers with a biomimetic adhesive group. Biomaterials. 2008;29(35):4592-7. https://doi.org/10.1016/j.biomaterials.2008.08.021
  71. Zhang Z, Chen S, Jiang S. Dual-functional biomimetic materials: nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules. 2006;7(12):3311-5. https://doi.org/10.1021/bm060750m
  72. Xue C-H, et al. Fabrication of robust and antifouling superhydrophobic surfaces via surface-initiated atom transfer radical polymerization. ACS Appl Mater Interfaces. 2015;7(15):8251-9. https://doi.org/10.1021/acsami.5b01426
  73. Privett BJ, et al. Antibacterial fluorinated silica colloid superhydrophobic surfaces. Langmuir. 2011;27(15):9597-601. https://doi.org/10.1021/la201801e
  74. Li J, et al. Hydrophobic liquid-infused porous polymer surfaces for antibacterial applications. ACS Appl Mater Interfaces. 2013;5(14):6704-11. https://doi.org/10.1021/am401532z
  75. Harrison RG. On the stereotropism of embryonic cells. Science. 1911;43(870):279-81.
  76. Recum AFV, et al. Surface roughness, porosity, and texture as modifiers of cellular adhesion. Tissue Eng. 1996;2(4):241-53. https://doi.org/10.1089/ten.1996.2.241
  77. Curtis A, Varde M. Control of cell behavior: topological factors. J Natl Cancer Inst. 1964;33(1):15-26.
  78. Korman N, Sudilovsky O, Gibbons D. The effect of humoral components on the cellular response to textured and nontextured PTFE. J Biomed Mater Res. 1984;18(2):225-41. https://doi.org/10.1002/jbm.820180210
  79. Curtis A, Wilkinson C. Topographical control of cells. Biomaterials. 1997;18(24):1573-83. https://doi.org/10.1016/S0142-9612(97)00144-0
  80. Chen CS, et al. Geometric control of cell life and death. Science. 1997;276(5317):1425-8. https://doi.org/10.1126/science.276.5317.1425
  81. Bettinger CJ, Langer R, Borenstein JT. Engineering substrate topography at the micro-and nanoscale to control cell function. Angew Chem Int Ed. 2009;48(30):5406-15. https://doi.org/10.1002/anie.200805179
  82. Xu L-C, Siedlecki CA. Submicron-textured biomaterial surface reduces staphylococcal bacterial adhesion and biofilm formation. Acta Biomater. 2012;8(1):72-81. https://doi.org/10.1016/j.actbio.2011.08.009
  83. Kirschner CM, Brennan AB. Bio-inspired antifouling strategies. Annu Rev Mater Res. 2012;42(1):211-29. https://doi.org/10.1146/annurev-matsci-070511-155012
  84. Widawski G, Rawiso M, Francois B. Self-organized honeycomb morphology of star-polymer polystyrene films. Nature. 1994;369(6479):387-9. https://doi.org/10.1038/369387a0
  85. Boltau M, et al. Surface-induced structure formation of polymer blends on patterned substrates. Nature. 1998;391(6670):877-9. https://doi.org/10.1038/36075
  86. Lim JY, et al. Human foetal osteoblastic cell response to polymer-demixed nanotopographic interfaces. J R Soc Interface. 2005;2(2):97-108. https://doi.org/10.1098/rsif.2004.0019
  87. Karthaus O, et al. Formation of ordered mesoscopic patterns in polymer cast films by dewetting. Thin Solid Films. 1998;327:829-32.
  88. Murthy N, et al. Self-assembled and etched cones on laser ablated polymer surfaces. J Appl Phys. 2006;100(2):023538. https://doi.org/10.1063/1.2212267
  89. Nishimoto S, Bhushan B. Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. RSC Advances. 2013;3(3):671-90. https://doi.org/10.1039/C2RA21260A
  90. Chandra P, et al. UV laser-ablated surface textures as potential regulator of cellular response. Biointerphases. 2010;5(2):53-9. https://doi.org/10.1116/1.3438080
  91. Hoipkemeier-Wilson L, et al. Antifouling potential of lubricious, microengineered, PDMS elastomers against zoospores of the green fouling alga Ulva (Enteromorpha). Biofouling. 2004;20(1):53-63. https://doi.org/10.1080/08927010410001662689
  92. Bixler GD, Bhushan B. Bioinspired rice leaf and butterfly wing surface structures combining shark skin and lotus effects. Soft Matter. 2012;8(44):11271-84. https://doi.org/10.1039/c2sm26655e
  93. Reddy ST, et al. Micropatterned surfaces for reducing the risk of catheterassociated urinary tract infection: an in vitro study on the effect of sharklet micropatterned surfaces to inhibit bacterial colonization and migration of uropathogenic Escherichia coli. J Endourol. 2011;25(9):1547-52. https://doi.org/10.1089/end.2010.0611
  94. Cheng YT, et al. Effects of micro- and nano-structures on the self-cleaning behaviour of lotus leaves. Nanotechnology. 2006;17(5):1359. https://doi.org/10.1088/0957-4484/17/5/032
  95. Koch K, Barthlott W. Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials. Philos T Roy Soc A. 2009;367(1893):1487-509. https://doi.org/10.1098/rsta.2009.0022
  96. Ensikat HJ, et al. Superhydrophobicity in perfection: the outstanding properties of the lotus leaf. Beilstein J Nanotechnol. 2011;2(1):152-61. https://doi.org/10.3762/bjnano.2.19
  97. Scardino A, et al. Biomimetic characterisation of key surface parameters for the development of fouling resistant materials. Biofouling. 2009;25(1):83-93. https://doi.org/10.1080/08927010802538480
  98. Bers AV, Wahl M. The influence of natural surface microtopographies on fouling. Biofouling. 2004;20(1):43-51. https://doi.org/10.1080/08927010410001655533
  99. Carman ML, et al. Engineered antifouling microtopographies - correlating wettability with cell attachment. Biofouling. 2006;22(1):11-21. https://doi.org/10.1080/08927010500484854
  100. Mann EE, et al. Surface micropattern limits bacterial contamination. Antimicrob Resist Infect Control. 2014;3(1):1. https://doi.org/10.1186/2047-2994-3-1
  101. Bers A, et al. Relevance of mytilid shell microtopographies for fouling defence-a global comparison. Biofouling. 2010;26(3):367-77. https://doi.org/10.1080/08927011003605888
  102. Zhang L, Zhao N, Xu J. Fabrication and application of superhydrophilic surfaces: a review. J Adhes Sci Technol. 2014;28(8-9):769-90. https://doi.org/10.1080/01694243.2012.697714
  103. Zhang J, Severtson SJ. Fabrication and use of artificial superhydrophilic surfaces. J Adhes Sci Technol. 2014;28(8-9):751-68. https://doi.org/10.1080/01694243.2012.697725

피인용 문헌

  1. Silicone rubber with mussel-inspired adhesive coatings for enhancing antifouling property and blood compatibility vol.25, pp.8, 2016, https://doi.org/10.1007/s13233-017-5092-y
  2. Developing Hybrid Polymer Scaffolds Using Peptide Modified Biopolymers for Cell Implantation vol.3, pp.10, 2016, https://doi.org/10.1021/acsbiomaterials.7b00383
  3. Biofunctionalization of surfaces using polyelectrolyte multilayers vol.18, pp.1, 2016, https://doi.org/10.1515/bnm-2016-0015
  4. Biofunctionalization of surfaces using polyelectrolyte multilayers vol.18, pp.1, 2016, https://doi.org/10.1515/bnm-2016-0015
  5. Nanocomposite Films of Laponite/PEG-Grafted Polymers and Polymer Brushes with Nonfouling Properties vol.33, pp.27, 2016, https://doi.org/10.1021/acs.langmuir.7b00534
  6. Targeting microbial biofilms: current and prospective therapeutic strategies vol.15, pp.12, 2017, https://doi.org/10.1038/nrmicro.2017.99
  7. Confinement Effects on Polymer Dynamics: Thermo-Responsive Behaviours of Hydroxypropyl Cellulose Polymers in Phospholipid-Coated Droplets (Water-in-Oil Emulsion) vol.9, pp.12, 2016, https://doi.org/10.3390/polym9120680
  8. Food-Safe Modification of Stainless Steel Food-Processing Surfaces to Reduce Bacterial Biofilms vol.10, pp.27, 2016, https://doi.org/10.1021/acsami.8b03788
  9. Surface-attached poly(phosphoester)-hydrogels with benzophenone groups vol.9, pp.3, 2016, https://doi.org/10.1039/c7py01777d
  10. Antifouling, fouling release and antimicrobial materials for surface modification of reverse osmosis and nanofiltration membranes vol.6, pp.2, 2018, https://doi.org/10.1039/c7ta08627j
  11. Simultaneous hydrothermal bioactivation with nano-topographic modulation of porous titanium alloys towards enhanced osteogenic and antimicrobial responses vol.6, pp.18, 2016, https://doi.org/10.1039/c8tb00382c
  12. Archaeal tetraether lipid coatings-A strategy for the development of membrane analog spacer systems for the site-specific functionalization of medical surfaces vol.13, pp.1, 2016, https://doi.org/10.1116/1.5008816
  13. Polydopamine films change their physicochemical and antimicrobial properties with a change in reaction conditions vol.20, pp.8, 2018, https://doi.org/10.1039/c7cp08406d
  14. Biomaterial strategies for limiting the impact of secondary events following spinal cord injury vol.13, pp.2, 2018, https://doi.org/10.1088/1748-605x/aa9bbb
  15. Nanostructure-Enabled and Macromolecule-Grafted Surfaces for Biomedical Applications vol.9, pp.5, 2016, https://doi.org/10.3390/mi9050243
  16. Recent Trends in Mussel-Inspired Catechol-Containing Polymers (A Review) vol.34, pp.3, 2016, https://doi.org/10.13005/ojc/340301
  17. The Effect of Select Personal Care Ingredients and Simple Formulations on the Attachment of Bacteria on Polystyrene vol.5, pp.3, 2018, https://doi.org/10.3390/cosmetics5030042
  18. Injectable and Degradable Poly(Oligoethylene glycol methacrylate) Hydrogels with Tunable Charge Densities as Adhesive Peptide-Free Cell Scaffolds vol.4, pp.11, 2016, https://doi.org/10.1021/acsbiomaterials.7b00397
  19. Low-fouling, mixed-charge poly-l-lysine polymers with anionic oligopeptide side-chains vol.6, pp.46, 2016, https://doi.org/10.1039/c8tb01619d
  20. Sulfobetaine methacrylate hydrogel-coated anti-fouling surfaces for implantable biomedical devices vol.22, pp.1, 2016, https://doi.org/10.1186/s40824-017-0113-7
  21. Antifouling (Bio)materials for Electrochemical (Bio)sensing vol.20, pp.2, 2019, https://doi.org/10.3390/ijms20020423
  22. Smart Nanoparticles for Drug Delivery Application: Development of Versatile Nanocarrier Platforms in Biotechnology and Nanomedicine vol.2019, pp.None, 2016, https://doi.org/10.1155/2019/3702518
  23. One-Step Anchoring of Tannic Acid-Scaffolded Bifunctional Coatings of Antifouling and Antimicrobial Polymer Brushes vol.7, pp.1, 2016, https://doi.org/10.1021/acssuschemeng.8b05789
  24. Surface Plasmon Resonance for Biomarker Detection: Advances in Non-invasive Cancer Diagnosis vol.7, pp.None, 2016, https://doi.org/10.3389/fchem.2019.00570
  25. Photoinduced Surface Zwitterionization for Antifouling of Porous Polymer Substrates vol.35, pp.5, 2016, https://doi.org/10.1021/acs.langmuir.8b01089
  26. Blood-Compatible Surfaces with Phosphorylcholine-Based Polymers for Cardiovascular Medical Devices vol.35, pp.5, 2016, https://doi.org/10.1021/acs.langmuir.8b01565
  27. Cell-Membrane-Inspired Silicone Interfaces that Mitigate Proinflammatory Macrophage Activation and Bacterial Adhesion vol.35, pp.5, 2019, https://doi.org/10.1021/acs.langmuir.8b02292
  28. Rapid Mussel-Inspired Surface Zwitteration for Enhanced Antifouling and Antibacterial Properties vol.35, pp.5, 2016, https://doi.org/10.1021/acs.langmuir.8b03810
  29. An introduction to zwitterionic polymer behavior and applications in solution and at surfaces vol.48, pp.3, 2019, https://doi.org/10.1039/c8cs00508g
  30. Electrochemical Impedance Spectroscopy Based Biosensors: Mechanistic Principles, Analytical Examples and Challenges towards Commercialization for Assays of Protein Cancer Biomarkers vol.6, pp.4, 2019, https://doi.org/10.1002/celc.201800848
  31. Broad-Spectrum Anti-Adhesive Coating Based on an Extracellular Polymer from a Marine Cyanobacterium vol.17, pp.4, 2019, https://doi.org/10.3390/md17040243
  32. Influence of surface topography attributes on settlement and adhesion of natural and synthetic species vol.15, pp.20, 2016, https://doi.org/10.1039/c9sm00527g
  33. Surface-Enhanced Raman Scattering Tags for Three-Dimensional Bioimaging and Biomarker Detection vol.4, pp.5, 2016, https://doi.org/10.1021/acssensors.9b00321
  34. Supramolecular concepts and approaches in corrosion and biofouling prevention vol.37, pp.3, 2016, https://doi.org/10.1515/corrrev-2018-0105
  35. Ultrascalable Multifunctional Nanoengineered Copper and Aluminum for Antiadhesion and Bactericidal Applications vol.2, pp.7, 2016, https://doi.org/10.1021/acsabm.8b00765
  36. Versatile biomimetic medical device surface: hydrophobin coated, nitric oxide-releasing polymer for antimicrobial and hemocompatible applications vol.7, pp.8, 2016, https://doi.org/10.1039/c9bm00469f
  37. Antimicrobial and antifouling polymeric coating mitigates persistence of Pseudomonas aeruginosa biofilm vol.35, pp.7, 2016, https://doi.org/10.1080/08927014.2019.1660774
  38. Impact of magnetic nanoparticle surface coating on their long-term intracellular biodegradation in stem cells vol.11, pp.35, 2016, https://doi.org/10.1039/c9nr05624f
  39. DNA-Based Nanofabrication for Antifouling Applications vol.35, pp.38, 2016, https://doi.org/10.1021/acs.langmuir.9b01569
  40. Quantification Methods for Textile-Adhered Bacteria: Extraction, Colorimetric, and Microscopic Analysis vol.11, pp.10, 2019, https://doi.org/10.3390/polym11101666
  41. Surface-Initiated ARGET ATRP of Antifouling Zwitterionic Brushes Using Versatile and Uniform Initiator Film vol.35, pp.41, 2016, https://doi.org/10.1021/acs.langmuir.9b02219
  42. Superhydrophobic Wax Coatings for Prevention of Biofilm Establishment in Dairy Food vol.2, pp.11, 2016, https://doi.org/10.1021/acsabm.9b00674
  43. QCM-D characterization of time-dependence of bacterial adhesion vol.5, pp.None, 2019, https://doi.org/10.1016/j.tcsw.2019.100024
  44. Anti-Biofouling Coatings on the Tooth Surface and Hydroxyapatite vol.15, pp.None, 2016, https://doi.org/10.2147/ijn.s281014
  45. Transpicuous-Cum-Fouling Resistant Copolymers of 3-Sulfopropyl Methacrylate and Methyl Methacrylate for Optronics Applications in Aquatic Medium and Healthcare vol.2020, pp.None, 2016, https://doi.org/10.1155/2020/5392074
  46. Vapor-Deposited Biointerfaces and Bacteria: An Evolving Conversation vol.6, pp.1, 2016, https://doi.org/10.1021/acsbiomaterials.9b01496
  47. Natural Anti-biofilm Agents: Strategies to Control Biofilm-Forming Pathogens vol.11, pp.None, 2016, https://doi.org/10.3389/fmicb.2020.566325
  48. A bacterial misericorde: laser-generated silicon nanorazors with embedded biotoxic nanoparticles combat the formation of durable biofilms vol.17, pp.2, 2016, https://doi.org/10.1088/1612-202x/ab5fca
  49. Micro- and Nanopatterned Silk Substrates for Antifouling Applications vol.12, pp.5, 2016, https://doi.org/10.1021/acsami.9b18187
  50. Conditioning film formation and its influence on the initial adhesion and biofilm formation by a cyanobacterium on photobioreactor materials vol.36, pp.2, 2020, https://doi.org/10.1080/08927014.2020.1748186
  51. Antifouling strategies in advanced electrochemical sensors and biosensors vol.145, pp.4, 2016, https://doi.org/10.1039/c9an02017a
  52. Surface Probe Linker with Tandem Anti-Fouling Properties for Application in Biosensor Technology vol.10, pp.3, 2020, https://doi.org/10.3390/bios10030020
  53. Enhanced Biocompatibility of Polyampholyte Hydrogels vol.36, pp.13, 2016, https://doi.org/10.1021/acs.langmuir.0c00114
  54. Continuous Small-Molecule Monitoring with a Digital Single-Particle Switch vol.5, pp.4, 2016, https://doi.org/10.1021/acssensors.0c00220
  55. Coating for preventing nonspecific adhesion mediated biofouling in salty systems: Effect of the electrostatic and van der waals interactions vol.41, pp.9, 2016, https://doi.org/10.1002/elps.201900348
  56. New Surface Modification Method To Develop a PET-Based Membrane with Enhanced Ion Permeability and Organic Fouling Resistance for Efficient Production of Marine Microalgae vol.12, pp.22, 2020, https://doi.org/10.1021/acsami.0c00546
  57. Interfacial Energy Measurement on the Reconstructive Polymer Surface: Dynamic Polymer Brush by Segregation of Amphiphilic Block Copolymers vol.36, pp.23, 2016, https://doi.org/10.1021/acs.langmuir.0c00764
  58. Novel Anti-fouling Strategies of Live and Dead Soft Corals (Sarcophyton trocheliophorum): Combined Physical and Chemical Mechanisms vol.17, pp.4, 2016, https://doi.org/10.1007/s42235-020-0072-x
  59. Recent Advances in Mussel-Inspired Synthetic Polymers as Marine Antifouling Coatings vol.10, pp.7, 2020, https://doi.org/10.3390/coatings10070653
  60. Recent Developments and Practical Feasibility of Polymer‐Based Antifouling Coatings vol.30, pp.32, 2016, https://doi.org/10.1002/adfm.202000936
  61. Marine Antibiofouling Properties of TiO2 and Ti-Cu-O Films Deposited by Aerosol-Assisted Chemical Vapor Deposition vol.10, pp.8, 2020, https://doi.org/10.3390/coatings10080779
  62. The Covalent Tethering of Poly(ethylene glycol) to Nylon 6 Surface via N , N′ -Disuccinimidyl Carbonate Conjugation: A New Approach in the Fight against Pathogenic Bacteria vol.12, pp.10, 2016, https://doi.org/10.3390/polym12102181
  63. Bioelectronics‐Related 2D Materials Beyond Graphene: Fundamentals, Properties, and Applications vol.30, pp.46, 2016, https://doi.org/10.1002/adfm.202003732
  64. Detection of Multiple Sclerosis Biomarkers in Serum by Ganglioside Microarrays and Surface Plasmon Resonance Imaging vol.5, pp.11, 2016, https://doi.org/10.1021/acssensors.0c01935
  65. Honey-inspired antimicrobial hydrogels resist bacterial colonization through twin synergistic mechanisms vol.10, pp.1, 2020, https://doi.org/10.1038/s41598-020-72478-6
  66. Recent Developments in Biomimetic Antifouling Materials: A Review vol.5, pp.4, 2016, https://doi.org/10.3390/biomimetics5040058
  67. A Glance at Antimicrobial Strategies to Prevent Catheter-Associated Medical Infections vol.6, pp.12, 2016, https://doi.org/10.1021/acsinfecdis.0c00526
  68. Controlled Surface Adhesion of Macrophages via Patterned Antifouling Polymer Brushes vol.1, pp.1, 2021, https://doi.org/10.1002/anbr.202000029
  69. Sensitivity Enhancement of Electrochemical Biosensor for Point of Care (POC) Applications: Vi Antigen Detection as a Case Study vol.168, pp.1, 2016, https://doi.org/10.1149/1945-7111/abd929
  70. Antibacterial Amphiphilic Copolymers of Dimethylamino Ethyl Methacrylate and Methyl Methacrylate to Control Biofilm Adhesion for Antifouling Applications vol.13, pp.2, 2016, https://doi.org/10.3390/polym13020216
  71. Bacterial Biofilm Growth on 3D-Printed Materials vol.12, pp.None, 2016, https://doi.org/10.3389/fmicb.2021.646303
  72. Infection-Triggered, Self-Cleaning Surfaces with On-Demand Cleavage of Surface-Localized Surfactant Moieties vol.7, pp.2, 2016, https://doi.org/10.1021/acsbiomaterials.0c01192
  73. Approaches for the inhibition and elimination of microbial biofilms using macromolecular agents vol.50, pp.3, 2016, https://doi.org/10.1039/d0cs00986e
  74. Biofouling-resistant tubular fluidic devices with magneto-responsive dynamic walls vol.17, pp.7, 2016, https://doi.org/10.1039/d0sm01979h
  75. Bile Acid Tethered Docetaxel‐Based Nanomicelles Mitigate Tumor Progression through Epigenetic Changes vol.133, pp.10, 2021, https://doi.org/10.1002/ange.202015173
  76. Bile Acid Tethered Docetaxel‐Based Nanomicelles Mitigate Tumor Progression through Epigenetic Changes vol.60, pp.10, 2021, https://doi.org/10.1002/anie.202015173
  77. Discontinuous Molecular Dynamics Simulations of Biomolecule Interfacial Behavior: Study of Ovispirin-1 Adsorption on a Graphene Surface vol.17, pp.3, 2016, https://doi.org/10.1021/acs.jctc.0c01172
  78. A dual thermoresponsive and antifouling zwitterionic microgel with pH triggered fluorescent “on-off” core vol.589, pp.None, 2016, https://doi.org/10.1016/j.jcis.2020.12.018
  79. Anti-Periprosthetic Infection Strategies: From Implant Surface Topographical Engineering to Smart Drug-Releasing Coatings vol.13, pp.18, 2021, https://doi.org/10.1021/acsami.1c01389
  80. Immobilization of Nanobodies with Vapor-Deposited Polymer Encapsulation for Robust Biosensors vol.3, pp.5, 2016, https://doi.org/10.1021/acsapm.1c00140
  81. WITHDRAWN: Functional surface microstructures inspired by nature – From adhesion and wetting principles to sustainable new devices vol.119, pp.None, 2021, https://doi.org/10.1016/j.pmatsci.2021.100778
  82. Recent Advances in Antifouling Materials for Surface Plasmon Resonance Biosensing in Clinical Diagnostics and Food Safety vol.13, pp.12, 2021, https://doi.org/10.3390/polym13121929
  83. Detection of Tumor DNA in Human Plasma with a Functional PLL-Based Surface Layer and Plasmonic Biosensing vol.6, pp.6, 2016, https://doi.org/10.1021/acssensors.1c00360
  84. Implant Fibrosis and the Underappreciated Role of Myofibroblasts in the Foreign Body Reaction vol.10, pp.7, 2021, https://doi.org/10.3390/cells10071794
  85. A Bacteria and Cell Repellent Zwitterionic Polymer Coating on Titanium Base Substrates towards Smart Implant Devices vol.13, pp.15, 2016, https://doi.org/10.3390/polym13152472
  86. Combined Endothelialization Promoting and Surface Binding Chimeric Conjugate with Low Thrombogenicity vol.32, pp.8, 2021, https://doi.org/10.1021/acs.bioconjchem.1c00152
  87. A versatile pH-responsive peptide based dynamic biointerface for tracking bacteria killing and infection resistance vol.9, pp.17, 2021, https://doi.org/10.1039/d1bm00950h
  88. Adaptive Coatings with Anticorrosion and Antibiofouling Properties vol.31, pp.37, 2021, https://doi.org/10.1002/adfm.202102568
  89. 3D‐Printed Underwater Super‐Oleophobic Shark Skin toward the Electricity Generation through Low‐Adhesion Sliding of Magnetic Nanofluid Droplets vol.31, pp.36, 2021, https://doi.org/10.1002/adfm.202103776
  90. Mussel biology: from the byssus to ecology and physiology, including microplastic ingestion and deep-sea adaptations vol.87, pp.6, 2016, https://doi.org/10.1007/s12562-021-01550-5
  91. Bio-Fabrication and Experimental Validation of an Mg - 25Ca - 5Zn Alloy Proposed for a Porous Metallic Scaffold vol.11, pp.11, 2021, https://doi.org/10.3390/cryst11111416
  92. Carbon Nanomaterials Modified Biomimetic Dental Implants for Diabetic Patients vol.11, pp.11, 2021, https://doi.org/10.3390/nano11112977
  93. Biological Effects Assessment of Antibiofouling EDCs: Gaeta Harbor (South Italy) Benthic Communities' Analysis by Biodiversity Indices and Quantitative gpx4 Expression vol.74, pp.4, 2021, https://doi.org/10.1007/s12595-021-00415-0
  94. Antibacterial material surfaces/interfaces for biomedical applications vol.25, pp.None, 2021, https://doi.org/10.1016/j.apmt.2021.101192
  95. Self-Assembling Peptides: From Design to Biomedical Applications vol.22, pp.23, 2016, https://doi.org/10.3390/ijms222312662
  96. Effect of Protein Adsorption on Air Plastron Behavior of a Superhydrophobic Surface vol.13, pp.48, 2021, https://doi.org/10.1021/acsami.1c15981
  97. Defeating antibiotic-resistant bacteria with protein-resistant polyGGE film vol.79, pp.4, 2016, https://doi.org/10.3233/ch-211250
  98. Strategies applied to modify structured and smooth surfaces: A step closer to reduce bacterial adhesion and biofilm formation vol.46, pp.None, 2016, https://doi.org/10.1016/j.colcom.2021.100560
  99. Turning industrial paints superhydrophobic via femtosecond laser surface hierarchical structuring vol.163, pp.None, 2016, https://doi.org/10.1016/j.porgcoat.2021.106625