DOI QR코드

DOI QR Code

Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone

  • Chen, Cen (Bio-X Center, College of Life Sciences, Zhejiang Sci-Tech University) ;
  • Bang, Sumi (Seoul National University of Science and Technology) ;
  • Cho, Younghak (Department of Mechanical System Design Engineering, Seoul National University of Science and Technology) ;
  • Lee, Sahnghoon (Department of Orthopaedic Surgery, Seoul National University College of Medicine/Seoul National University Hospital) ;
  • Lee, Inseop (Bio-X Center, College of Life Sciences, Zhejiang Sci-Tech University) ;
  • Zhang, ShengMin (Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology) ;
  • Noh, Insup (Seoul National University of Science and Technology)
  • Received : 2016.02.04
  • Accepted : 2016.04.07
  • Published : 2016.06.01

Abstract

This review discusses about biomimetic medical materials for tissue engineering of bone and cartilage, after previous scientific commentary of the invitation-based, Korea-China joint symposium on biomimetic medical materials, which was held in Seoul, Korea, from October 22 to 26, 2015. The contents of this review were evolved from the presentations of that symposium. Four topics of biomimetic medical materials were discussed from different research groups here: 1) 3D bioprinting medical materials, 2) nano/micro-technology, 3) surface modification of biomaterials for their interactions with cells and 4) clinical aspects of biomaterials for cartilage focusing on cells, scaffolds and cytokines.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF), Natural Science Foundation of China (NSFC)

References

  1. Chatterjee K, Kraigsley AM, Bolikal D, Kohn J, Simon Jr CG. Gas-foamed scaffold gradients for combinatorial screening in 3D. J Funct Biomater. 2012;3:173-82. https://doi.org/10.3390/jfb3010173
  2. Barbanti SH, Zavaglia CAC, Duek EAR. Effect of salt leaching on PCL and PLGA(50/50) resorbable scaffolds. Mater Res. 2008;11(2):75-80. https://doi.org/10.1590/S1516-14392008000100014
  3. Haugh MG, Murphy CM, O'Brien FJ. Novel freeze-drying methods to produce a range of collagen-glycosaminoglycan scaffolds with tailored mean pore sizes. Tissue Eng Part C Methods. 2010;16(5):887-94. https://doi.org/10.1089/ten.tec.2009.0422
  4. Jo S, Kim S, Noh I. Synthesis of in situ chondroitin sulfate hydrogel through phosphine-mediated Michael type addition reaction. Macromol Res. 2012;20:968-76. https://doi.org/10.1007/s13233-012-0138-7
  5. Macadam SA, Lennox PA. Acellular dermal matrices: Use in reconstructive and aesthetic breast surgery. Can J Plast Surg. 2012;20(2):75-89. https://doi.org/10.1177/229255031202000201
  6. Lee KBL, Hui JHP, Song IC, Ardany L, Lee EH. Injectable mesenchymal stem cell therapy for large cartilage defects-A porcine model. Stem Cells. 2007;25:2964-71. https://doi.org/10.1634/stemcells.2006-0311
  7. Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015;9:4. https://doi.org/10.1186/s13036-015-0001-4
  8. Balogun VA, Kirkwood ND, Mativenga PT. A review on powder bed fusion direct electrical energy demand in fused deposition modelling. Procedia CIRP. 2014;15:38-43. https://doi.org/10.1016/j.procir.2014.06.029
  9. Lee KW, Wang S, Fox BC, Ritman EL, Yaszemski MJ, Lu L. Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: Effects of resin formulations and laser parameters. Biomacromolecules. 2007;8(4):1077-84. https://doi.org/10.1021/bm060834v
  10. Lee JW, Kim JY, Cho DW. Solid free-form fabrication technology and its application to bone tissue engineering. Int J Stem Cells. 2010;3:85-95. https://doi.org/10.15283/ijsc.2010.3.2.85
  11. Smyth PA, Green I, Jackson RL, Hanson RM. Biomimetic model of articular cartilage based on in vitro experiments. J Biomimetics Biomaterials Biomed Eng. 2014;21:75-91. https://doi.org/10.4028/www.scientific.net/JBBBE.21.75
  12. Klein TJ, Jos Malda J, Sah RL, Hutmacher DW. Tissue engineering of articular cartilage with biomimetic zones. Tissue Eng Part B. 2009;15:143-57. https://doi.org/10.1089/ten.teb.2008.0563
  13. Almeida CR, Serra T, Oliveira MI, Planell JA, Barbosa MA, Navarro M. Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte/macrophage responses: Unraveling the effect of 3-D structures on inflammation. Acta Biomater. 2014;10(2):613-22. 13. https://doi.org/10.1016/j.actbio.2013.10.035
  14. Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM, Kates SL, Awad HA. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials. 2014;35(13):4026-34. https://doi.org/10.1016/j.biomaterials.2014.01.064
  15. Xu F, Celli J, Rizvi I, Moon SJ, Hasan T, Demirci U. A three-dimensional in vitro ovarian cancer co-culture model using a high-throughput cell patterning platform. Biotechnol J. 2011;6(2):204-12. https://doi.org/10.1002/biot.201000340
  16. Serra T, Ortiz-Hernandez M, Elisabeth Engel E, Planell JA, Navarro M. Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds. Mater Sci and Eng: C. 2014;38:55-62. https://doi.org/10.1016/j.msec.2014.01.003
  17. Park HS, Lee SY, Yoon HS, Noh I. Biological evaluation of micro-patterned hyaluronic acid hydrogel for bone tissue engineering. Pure and Applied Chem. 2014;86:1911-22. https://doi.org/10.1515/pac-2014-0613
  18. Fjserholm F, Stegmayr J, Bauer P, Johansson F, Wallman L, Bengtsson M, Oredsson S. Biocompatibility of a polymer based on off-stoichiometry thiolenes + expoxy (OSTE+) for neural implants. Biomater Res. 2015;19:174-83.
  19. Choi SC, Yoo MA, Lee SY, Lee HJ, Son DH, Jung J, Noh I, Kim CW. Modulation of biomechanical properties of hyaluronic acid hydrogels by crosslinking agents. J Biomed Mater Res Part A. 2015;103(9):3072-80. https://doi.org/10.1002/jbm.a.35437
  20. Jo S, Kim S, Cho TH, Shin E, Hwang SJ, Noh I. Effects of recombinant human bone morphogenic protein-2 and human bone marrow-derived stromal cells on in vivo bone regeneration of chitosan-poly(ethylene oxide) hydrogel. J Biomed Mater Res Part A. 2013;101A(3):892-901. https://doi.org/10.1002/jbm.a.34354
  21. Subbiah R, Suhaeri M, Hwang MP, Kim W, Park K. Investigation of the changes of biophysical/mechanical characteristics of differentiating preosteoblasts in vitro. Biomater Res. 2015;19:24. https://doi.org/10.1186/s40824-015-0046-y
  22. Kim DH, Hwang KH, Lee JD, Park HC, Yoon SY. Long and short range order structural analysis of in-situ formed biphasic calcium phosphates. Biomater Res. 2015;19:14. https://doi.org/10.1186/s40824-015-0036-0
  23. Buyukhatipoglu K, Jo W, Sun W, Clyne AM. The role of printing parameters and scaffold biopolymer properties in the efficacy of a new hybrid nanobioprinting system. Biofabrication. 2009;1(3):035003. https://doi.org/10.1088/1758-5082/1/3/035003
  24. Tarafder S, Bose S. Polycaprolactone-coated 3D printed tricalcium phosphate scaffolds for bone tissue engineering: in vitro alendronate release behavior and local delivery effect on in vivo osteogenesis. ACS Appl Mater Interfaces. 2014;6(13):9955-65. https://doi.org/10.1021/am501048n
  25. Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4:518-24. https://doi.org/10.1038/nmat1421
  26. Bose S, Vahabzadeh S, Amit BA. Bone tissue engineering using 3D printing. Materials Today. 2013;16(12):496-504. https://doi.org/10.1016/j.mattod.2013.11.017
  27. Patterson J, Martino MM, Jeffrey AH. Biomimetic materials in tissue engineering. Materials Today. 2010;13:14-22.
  28. Liu W, L Y, Liu J, Niu X, Wang Y, Li D. Application and performance of 3D printing in nanobiomaterials, J. Nanomaterials. 2013;681050:7. http://dx.doi. org/10.1155/2013/681050.
  29. Gao C, Deng Y, Feng P, Mao Z, Li P, Yang B, Deng J, Cao Y, Shuai C, Peng S. Current progress in bioactive ceramic scaffolds for bone repair and regeneration. Int J Mol Sci. 2014;15(3):4714-32. https://doi.org/10.3390/ijms15034714
  30. Do AV, Khorsand B, Geary SM, Salem AK. 3D Printing of scaffolds for tissue regeneration applications. Adv Health Mater. 2015;4(12):1742-62. https://doi.org/10.1002/adhm.201500168
  31. Mohanty S, Larsen LB, Trifol J, Szabo P, Burri HVR, Canali C, Dufva M, Emneus J, Wolff A. Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed molds. Mater Sci and Eng C. 2015;55:569-78. https://doi.org/10.1016/j.msec.2015.06.002
  32. Naveena N, Venugopal J, Rajeswari R, Sundarrajan S, Sridhar R, Shayanti M, et al. Biomimetic composites and stem cells interaction for bone and cartilage tissue regeneration. J Mater Chem. 2012;22:5239-53. https://doi.org/10.1039/c1jm14401d
  33. Tseng AA, Chen K, Chen CD, Ma KJ. Electron beam lithography in nanoscale fabrication: recent development. IEEE Trans Electron Packag Manuf. 2003;26(2):141-9. https://doi.org/10.1109/TEPM.2003.817714
  34. Guo LJ. Recent progress in nanoimprint technology and its applications. J Physics D Applied Physics. 2004;37(11):R123. https://doi.org/10.1088/0022-3727/37/11/R01
  35. Dimov S, Brousseau E, Minev R, Bigot S. Micro- and nano-manufacturing: Challenges and opportunities. J Mech Eng Sci. 2012;226(1):3-15. https://doi.org/10.1177/0954406211422972
  36. Xu H, Li H, Chang J. Controlled drug release from a polymer matrix by patterned electrospun nanofibers with controllable hydrophobicity. J Mater Chem B. 2013;1:4182-8.
  37. Zhang M, Sun S, Yu X, Cao X, Zou Y, Yi T. Formation of a large-scale ordered honeycomb pattern by an organogelator via a self-assembly process. Chem Commun. 2010;46:3553-5. https://doi.org/10.1039/c000928h
  38. Kim BC, Moraes C, Huang J, Thouless MD, Akayama S. Fracture-based micro- and nanofabrication for biological applications. Biomater Sci. 2014;2(3):288-96. https://doi.org/10.1039/c3bm60276a
  39. Li M, Bhiladvala RB, Morrow TJ, Sioss JA, Lew KK, Redwing JM, Mayer TS. Bottom-up assembly of large-area nanowire resonator arrays. Nature Nanotech. 2008;3(2):88-92. https://doi.org/10.1038/nnano.2008.26
  40. Kovtyukhova NI, Mallouk TE, Mayer TS. Templated surface sol-gel synthesis of $SiO_2$ nanotubes and $SiO_2$-insulated metal nanowires. Adv Mater. 2003; 15(10):780-5. https://doi.org/10.1002/adma.200304701
  41. Kim SO, Solak HH, Stoykovich MP, Ferrier NJ, de Pablo JJ, Nealey PF. Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature. 2003;424(6947):411-4. https://doi.org/10.1038/nature01775
  42. Neves NM, Campos R, Pedro A, Cunha J, Macedo F, Reis RL. Patterning of polymer nanofiber meshes by electrospinning for biomedical applications. Int J Nanomed. 2007;2(3):433-48.
  43. Kim HN, Kang DH, Kim MS, Jiao A, Kim DH, Suh KY. Patterning Methods for Polymers in Cell and Tissue Engineering. Annals of Biomed Eng. 2012;40(6):1339-55. https://doi.org/10.1007/s10439-012-0510-y
  44. Lima AC, Mano JF. Micro/nano-structured superhydrophobic surfaces in the biomedical field: part I: basic concepts and biomimetic approaches. Nanomedicine. 2015;10(1):103-19. https://doi.org/10.2217/nnm.14.174
  45. Lima AC, Mano JF. Micro/nano-structured superhydrophobic surfaces in the biomedical field: part II: applications overview. Nanomedicine. 2015;10(2):271-97. https://doi.org/10.2217/nnm.14.175
  46. Kyle DJT, Oikonomou A, Hill E, Bayat A. Development and functional evaluation of biomimetic silicone surfaces with hierarchical micro/nanotopographical features demonstrates favourable in vitro foreign body response of breast-derived fibroblasts. Biomaterials. 2015;52:88-102. https://doi.org/10.1016/j.biomaterials.2015.02.003
  47. Losic D, Mitchell JG, Lal R, Voelcker NH. Rapid Fabrication of micro- and nanoscale Patterns by replica molding from diatom biosilica. Adv Funct Mater. 2007;17:2439-46. https://doi.org/10.1002/adfm.200600872
  48. Andrews HG, Badyal JPS. Bioinspired hook surfaces based upon a ubiquitous weed (Galium aparine) for dry adhesion. J Adhesion Sci and Tech. 2014;28(13):1243-55. https://doi.org/10.1080/01694243.2014.891435
  49. Liang J, Song R, Huang Q, Yang Y, Lin L, Zhang Y, Jiang P, Duan H, Dong X, Lin C. Electrochemical construction of a bio-inspired micro/nano-textured structure with cell-sized microhole arrays on biomedical titanium to enhance bioactivity. Electrochim Acta. 2015;174:1149-59. https://doi.org/10.1016/j.electacta.2015.06.100
  50. Armentano I, Bitinis N, Fortunati E, Mattioli S, Rescignano N, Verdejo R, Lopez-Manchado MA, Kenny JM. Multifunctional nanostructured PLA materials for packaging and tissue engineering. Progress in Polym Sci. 2013;38:1720-47. https://doi.org/10.1016/j.progpolymsci.2013.05.010
  51. Dvir T, Timko BP, Kohane DS, Langer R. Nanotechnological strategies for engineering complex tissues. Nature Nanotech. 2011;6:13-22. https://doi.org/10.1038/nnano.2010.246
  52. Zhang L, Webster TJ. Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Nano Today. 2009;4:66-80. https://doi.org/10.1016/j.nantod.2008.10.014
  53. Fratzl P, Weinkamer R. Nature's hierarchical materials. Progress in Mater Sci. 2007;52:1263-334. https://doi.org/10.1016/j.pmatsci.2007.06.001
  54. Huebsch N, Mooney DJ. Inspiration and application in the evolution of biomaterials. Nature. 2009;462:426-32. https://doi.org/10.1038/nature08601
  55. Qiu Z-Y, Chen C, Wang X-M, Lee IS. Advances in the surface modification techniques of bone-related implants for last 10 years. Regen Biomater. 2014;1:67-79. https://doi.org/10.1093/rb/rbu007
  56. Rammelt S, Illert T, Bierbaum S, Scharnweber D, Zwipp H, Schneiders W. Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate. Biomaterials. 2006;27:5561-71. https://doi.org/10.1016/j.biomaterials.2006.06.034
  57. Pujari SP, Scheres L, Marcelis A, Zuilhof H. Covalent surface modification of oxide surfaces. Angew Chem Int Ed. 2014;53:6322-56. https://doi.org/10.1002/anie.201306709
  58. Tanase C, Sartoris A, Popa M, Verestiuc L, Unger R, Kirkpatrick C. In vitro evaluation of biomimetic chitosan-calcium phosphate scaffolds with potential application in bone tissue engineering. Biomed Mater. 2013;8:025002. https://doi.org/10.1088/1748-6041/8/2/025002
  59. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907-15. https://doi.org/10.1016/j.biomaterials.2006.01.017
  60. Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials. 2003;24:4353-64. https://doi.org/10.1016/S0142-9612(03)00339-9
  61. Chen C, Zhang SM, Lee IS. Immobilizing bioactive molecules onto titanium implants to improve osseointegration. Surf Coat Tech. 2013;228:S312-7. https://doi.org/10.1016/j.surfcoat.2012.05.112
  62. Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R. Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites-A review. Progress in Polymer Sci. 2013;38:1232-61. https://doi.org/10.1016/j.progpolymsci.2013.02.003
  63. Wahl D, Czernuszka J. Collagen-hydroxyapatite composites for hard tissue repair. European Cells & Materials. 2006;11:43-56. https://doi.org/10.22203/eCM.v011a06
  64. Kong X, Cui F, Wang X, Zhang M, Zhang W. Silk fibroin regulated mineralization of hydroxyapatite nanocrystals. J Crystal Growth. 2004;270:197-202. https://doi.org/10.1016/j.jcrysgro.2004.06.007
  65. He G, Dahl T, Veis A, George A. Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein. Nat Mater. 2003;2:552-8. https://doi.org/10.1038/nmat945
  66. Pighinelli L, Kucharska M. Chitosan-hydroxyapatite composites. Carbohydr Polym. 2013;93:256-62. https://doi.org/10.1016/j.carbpol.2012.06.004
  67. Sangeetha K, Thamizhavel A, Girija E. Effect of gelatin on the in situ formation of Alginate/Hydroxyapatite nanocomposite. Mater Lett. 2013;91:27-30. https://doi.org/10.1016/j.matlet.2012.09.054
  68. Vines JB, Lim D-J, Anderson JM, Jun HW. Hydroxyapatite nanoparticle reinforced peptide amphiphile nanomatrix enhances the osteogenic differentiation of mesenchymal stem cells by compositional ratios. Acta Biomater. 2012;8:4053-63. https://doi.org/10.1016/j.actbio.2012.07.024
  69. Ma J, Wang J, Ai X, Zhang S. Biomimetic self-assembly of apatite hybrid materials: from a single molecular template to bi-/multi-molecular templates. Biotech Adv. 2014;32:744-60. https://doi.org/10.1016/j.biotechadv.2013.10.014
  70. Wang J, Zhou W, Hu W, Zhou L, Wang S, Zhang S. Collagen/silk fibroin bi-template induced biomimetic bone-like substitutes. J Biomed Mater Res Part A. 2011;99:327-34.
  71. Tari NE, Motlagh MMK, Sohrabi B. Synthesis of hydroxyapatite particles in catanionic mixed surfactants template. Mater Chem and Phy. 2011;131:132-5. https://doi.org/10.1016/j.matchemphys.2011.07.078
  72. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331:889-95. https://doi.org/10.1056/NEJM199410063311401
  73. Brittberg M. Autologous chondrocyte implantation technique and long-term follow-up. Injury. 2008;39 Suppl 1:S40-9.
  74. Knutsen G, Engebretsen L, Ludvigsen TC, Drogset JO, Grontvedt T, Solheim E, Strand T, Roberts S, Isaksen V, Johansen O. Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. Bone Joint Surg Am. 2004;86-A:455-64.
  75. Harris JD, Siston RA, Brophy RH, Lattermann C, Carey JL, Flanigan DC. Failures, re-operations, and complications after autologous chondrocyte implantation-a systematic review. Osteoarthritis Cartilage. 2011;19(7):779-91. https://doi.org/10.1016/j.joca.2011.02.010
  76. Khan WS, Adesida AB, Tew SR, Longo UG, Hardingham TE. Fat pad-derived mesenchymal stem cells as a potential source for cell-based adipose tissue repair strategies. Cell Prolif. 2012;45:111-20. https://doi.org/10.1111/j.1365-2184.2011.00804.x
  77. Choi WH, Kim HR, Lee SJ, Jeong N, Park SR, Choi BH, Min BH. Fetal cartilagederived cells have stem cell properties and are a highly potent cell source for cartilage regeneration. Cell Transplant 2015. [Epub ahead of print].
  78. Williams SK, Amiel D, Ball ST, Allen RT, Tontz Jr WL, Emmerson BC, Badlani NM, Emery SC, Haghighi P, Bugbee WD. Analysis of cartilage tissue on a cellular level in fresh osteochondral allograft retrievals. Am J Sports Med. 2007;35:2022-32. https://doi.org/10.1177/0363546507305017
  79. Steadman JR, Rodkey WG, Briggs KK, Rodrigo JJ. The microfracture technic in the management of complete cartilage defects in the knee joint. Orthopad. 1999;28:26-32.
  80. Gobbi A, Karnatzikos G, Kumar A. Long-term results after microfracture treatment for full-thickness knee chondral lesions in athletes. Knee Surg Sports Traumatol Arthrosc. 2014;22:1986-96. https://doi.org/10.1007/s00167-013-2676-8
  81. Negrin LL, Vecsei V. Do meta-analyses reveal time-dependent differences between the clinical outcomes achieved by microfracture and autologous chondrocyte implantation in the treatment of cartilage defects of the knee? J Orthop Sci. 2013;18:940-8. https://doi.org/10.1007/s00776-013-0449-3
  82. Anders S, Volz M, Frick H, Gellissen JA. Randomized controlled trial comparing autologous matrix-induced chondrogenesis (AMIC(R)) to microfracture: Analysis of 1- and 2-year follow-up data of 2 centers. Open Orthop J. 2013;7:133-43. https://doi.org/10.2174/1874325001307010133
  83. Fortier LA, Potter HG, Rickey EJ, Schnabel LV, Foo LF, Chong LR, Stokol T, Cheetham J, Nixon AJ. Concentrated bone marrow aspirate improves fullthickness cartilage repair compared with microfracture in the equine model. J Bone Joint Surg Am. 2010;92:1927-37. https://doi.org/10.2106/JBJS.I.01284
  84. Oussedik S, Tsitskaris K, Parker D. Treatment of articular cartilage lesions of the knee by microfracture or autologous chondrocyte implantation: a systematic review. Arthroscopy. 2015;31:732-44. https://doi.org/10.1016/j.arthro.2014.11.023
  85. Basad E, Wissing FR, Fehrenbach P, Rickert M, Steinmeyer J, Ishaque B. Matrix-induced autologous chondrocyte implantation (MACI) in the knee: clinical outcomes and challenges. Knee Surg Sports Traumatol Arthrosc. 2014;23(12):3729-35.
  86. Huang H, Zhang X, Hu X, Shao Z, Zhu J, Dai L, Man Z, Yuan L, Chen H, Zhou C, Ao Y. A functional biphasic biomaterial homing mesenchymal stem cells for in vivo cartilage regeneration. Biomaterials. 2014;35:9608-19. https://doi.org/10.1016/j.biomaterials.2014.08.020
  87. Lee CH, Cook JL, Mendelson A, Moioli EK, Yao H, Mao JJ. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet. 2010;376(9739):440-8. https://doi.org/10.1016/S0140-6736(10)60668-X
  88. Chang NJ, Lam CF, Lin CC, Chen WL, Li CF, Lin YT, Yeh ML. Transplantation of autologous endothelial progenitor cells in porous PLGA scaffolds create a microenvironment for the regeneration of hyaline cartilage in rabbits. Osteoarthr Cartil. 2013;21(10):1613-22. https://doi.org/10.1016/j.joca.2013.07.016

Cited by

  1. Direct photo-patterning on anthracene containing polymer for guiding stem cell adhesion vol.20, pp.1, 2016, https://doi.org/10.1186/s40824-016-0072-4
  2. Lipid-based surface engineering of PLGA nanoparticles for drug and gene delivery applications vol.20, pp.1, 2016, https://doi.org/10.1186/s40824-016-0081-3
  3. The role of biomaterials in the treatment of meniscal tears vol.5, pp.None, 2016, https://doi.org/10.7717/peerj.4076
  4. Carboxymethylcellulose with phenolic hydroxyl microcapsules enclosinggene-modified BMSCs for controlled BMP-2 release in vitro vol.45, pp.8, 2016, https://doi.org/10.1080/21691401.2017.1282499
  5. Click Chemistry-Based Injectable Hydrogels and Bioprinting Inks for Tissue Engineering Applications vol.15, pp.5, 2016, https://doi.org/10.1007/s13770-018-0152-8
  6. 3D bioprinting: an emerging technology full of opportunities and challenges vol.1, pp.1, 2016, https://doi.org/10.1007/s42242-018-0004-3
  7. Biomaterials Enabled Cell-Free Strategies for Endogenous Bone Regeneration vol.24, pp.6, 2018, https://doi.org/10.1089/ten.teb.2018.0012
  8. Bioglass-Incorporated Methacrylated Gelatin Cryogel for Regeneration of Bone Defects vol.10, pp.8, 2016, https://doi.org/10.3390/polym10080914
  9. Sulfobetaine methacrylate hydrogel-coated anti-fouling surfaces for implantable biomedical devices vol.22, pp.1, 2016, https://doi.org/10.1186/s40824-017-0113-7
  10. Recent trends in bioinks for 3D printing vol.22, pp.1, 2016, https://doi.org/10.1186/s40824-018-0122-1
  11. Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts on chemically surface-modified poly( ε -caprolactone) 3D-printed scaffolds compared to RGD immobilized scaffolds vol.14, pp.1, 2016, https://doi.org/10.1088/1748-605x/aaeb82
  12. Effects of Ultra-Purified Alginate Gel Implantation on Meniscal Defects in Rabbits vol.47, pp.3, 2016, https://doi.org/10.1177/0363546518816690
  13. Bioactive Materials: A Comprehensive Review on Interactions with Biological Microenvironment Based on the Immune Response vol.16, pp.4, 2019, https://doi.org/10.1007/s42235-019-0046-z
  14. Hydrogel‐Based 3D Bioprinting for Bone and Cartilage Tissue Engineering vol.15, pp.12, 2020, https://doi.org/10.1002/biot.202000095
  15. Gene-modified BMSCs encapsulated with carboxymethyl cellulose facilitate osteogenesis in vitro and in vivo vol.35, pp.7, 2016, https://doi.org/10.1177/0885328220948030
  16. Bioactive Icariin/β-CD-IC/Bacterial Cellulose with Enhanced Biomedical Potential vol.11, pp.2, 2016, https://doi.org/10.3390/nano11020387
  17. A Roadmap of In Vitro Models in Osteoarthritis: A Focus on Their Biological Relevance in Regenerative Medicine vol.10, pp.9, 2016, https://doi.org/10.3390/jcm10091920
  18. Review of Low-Cost 3D Bioprinters: State of the Market and Observed Future Trends vol.26, pp.4, 2016, https://doi.org/10.1177/24726303211020297
  19. Preparation of Calcium Phosphate/Chitosan Granules vol.57, pp.9, 2016, https://doi.org/10.1134/s0020168521090090
  20. Nanotechnologies and Nanomaterials in 3D (Bio)printing toward Bone Regeneration vol.1, pp.11, 2021, https://doi.org/10.1002/anbr.202100035
  21. Comprehensive Review on Design and Manufacturing of Bio-scaffolds for Bone Reconstruction vol.4, pp.12, 2016, https://doi.org/10.1021/acsabm.1c00949