DOI QR코드

DOI QR Code

Biomimetic microenvironments for regenerative endodontics

  • Kaushik, Sagar N. (Department of Biomedical Engineering, University of Alabama at Birmingham) ;
  • Kim, Bogeun (Department of Biomedical Engineering, University of Alabama at Birmingham) ;
  • Walma, Alexander M. Cruz (Department of Biomedical Engineering, University of Alabama at Birmingham) ;
  • Choi, Sung Chul (Department of Pediatric Dentistry, Kyung Hee University) ;
  • Wu, Hui (Department of Pediatric Dentistry, University of Alabama at Birmingham) ;
  • Mao, Jeremy J. (Center for Craniofacial Regeneration at Columbia University) ;
  • Jun, Ho-Wook (Department of Biomedical Engineering, University of Alabama at Birmingham) ;
  • Cheon, Kyounga (Department of Pediatric Dentistry, University of Alabama at Birmingham)
  • Received : 2016.04.11
  • Accepted : 2016.05.24
  • Published : 2016.06.01

Abstract

Regenerative endodontics has been proposed to replace damaged and underdeveloped tooth structures with normal pulp-dentin tissue by providing a natural extracellular matrix (ECM) mimicking environment; stem cells, signaling molecules, and scaffolds. In addition, clinical success of the regenerative endodontic treatments can be evidenced by absence of signs and symptoms; no bony pathology, a disinfected pulp, and the maturation of root dentin in length and thickness. In spite of the various approaches of regenerative endodontics, there are several major challenges that remain to be improved: a) the endodontic root canal is a strong harbor of the endodontic bacterial biofilm and the fundamental etiologic factors of recurrent endodontic diseases, (b) tooth discolorations are caused by antibiotics and filling materials, (c) cervical root fractures are caused by endodontic medicaments, (d) pulp tissue is not vascularized nor innervated, and (e) the dentin matrix is not developed with adequate root thickness and length. Generally, current clinical protocols and recent studies have shown a limited success of the pulp-dentin tissue regeneration. Throughout the various approaches, the construction of biomimetic microenvironments of pulp-dentin tissue is a key concept of the tissue engineering based regenerative endodontics. The biomimetic microenvironments are composed of a synthetic nano-scaled polymeric fiber structure that mimics native pulp ECM and functions as a scaffold of the pulp-dentin tissue complex. They will provide a framework of the pulp ECM, can deliver selective bioactive molecules, and may recruit pluripotent stem cells from the vicinity of the pulp apex. The polymeric nanofibers are produced by methods of self-assembly, electrospinning, and phase separation. In order to be applied to biomedical use, the polymeric nanofibers require biocompatibility, stability, and biodegradability. Therefore, this review focuses on the development and application of the biomimetic microenvironments of pulp-dentin tissue among the current regenerative endodontics.

Keywords

Acknowledgement

Supported by : NIH, NSF

References

  1. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920-6. https://doi.org/10.1126/science.8493529
  2. Murray PE, Garcia-Godoy F, Hargreaves KM. Regenerative endodontics: a review of current status and a call for action. J Endod. 2007;33:377-90. https://doi.org/10.1016/j.joen.2006.09.013
  3. Mooney DJ, Powell C, Piana J, Rutherford B. Engineering dental pulp-like tissue in vitro. Biotechnol Prog. 1996;12:865-8. https://doi.org/10.1021/bp960073f
  4. Albuquerque MT, Valera MC, Nakashima M, Nor JE, Bottino MC. Tissueengineering-based strategies for regenerative endodontics. J Dent Res. 2014;93:1222-31. https://doi.org/10.1177/0022034514549809
  5. Huang GT. Pulp and dentin tissue engineering and regeneration: current progress. Regen Med. 2009;4:697-707. https://doi.org/10.2217/rme.09.45
  6. Hargreaves KM, Diogenes A, Teixeira FB. Treatment options: biological basis of regenerative endodontic procedures. J Endod. 2013;39:S30-43. https://doi.org/10.1016/j.joen.2012.11.025
  7. Yuan Z, Nie H, Wang S, Lee CH, Li A, Fu SY, Zhou H, Chen L, Mao JJ. Biomaterial selection for tooth regeneration. Tissue Eng Part B Rev. 2011;17: 373-88. https://doi.org/10.1089/ten.teb.2011.0041
  8. Banchs F, Trope M. Revascularization of immature permanent teeth with apical periodontitis: new treatment protocol? J Endod. 2004;30:196-200. https://doi.org/10.1097/00004770-200404000-00003
  9. Ostby BN. The role of the blood clot in endodontic therapy. An experimental histologic study. Acta Odontol Scand. 1961;19:324-53.
  10. Skoglund A, Tronstad L, Wallenius K. A microangiographic study of vascular changes in replanted and autotransplanted teeth of young dogs. Oral Surg Oral Med Oral Pathol. 1978;45:17-28. https://doi.org/10.1016/0030-4220(78)90217-7
  11. Huang GT. Dental pulp and dentin tissue engineering and regeneration: advancement and challenge. Front Biosci (Elite Ed). 2011;3:788-800.
  12. Kim JY, Xin X, Moioli EK, Chung J, Lee CH, Chen M, Fu SY, Koch PD, Mao JJ. Regeneration of dental-pulp-like tissue by chemotaxis-induced cell homing. Tissue Eng Part A. 2010;16:3023-31. https://doi.org/10.1089/ten.tea.2010.0181
  13. Wang X, Thibodeau B, Trope M, Lin LM, Huang GT. Histologic characterization of regenerated tissues in canal space after the revitalization/revascularization procedure of immature dog teeth with apical periodontitis. J Endod. 2010;36:56-63. https://doi.org/10.1016/j.joen.2009.09.039
  14. Shimizu E, Jong G, Partridge N, Rosenberg PA, Lin LM. Histologic observation of a human immature permanent tooth with irreversible pulpitis after revascularization/regeneration procedure. J Endod. 2012;38:1293-7. https://doi.org/10.1016/j.joen.2012.06.017
  15. Nosrat A, Homayounfar N, Oloomi K. Drawbacks and unfavorable outcomes of regenerative endodontic treatments of necrotic immature teeth: a literature review and report of a case. J Endod. 2012;38:1428-34. https://doi.org/10.1016/j.joen.2012.06.025
  16. About I, Bottero MJ, de Denato P, Camps J, Franquin JC, Mitsiadis TA. Human dentin production in vitro. Exp Cell Res. 2000;258:33-41. https://doi.org/10.1006/excr.2000.4909
  17. Friedlander LT, Cullinan MP, Love RM. Dental stem cells and their potential role in apexogenesis and apexification. Int Endod J. 2009;42:955-62. https://doi.org/10.1111/j.1365-2591.2009.01622.x
  18. Schmalz G, Smith AJ. Pulp development, repair, and regeneration: challenges of the transition from traditional dentistry to biologically based therapies. J Endod. 2014;40:S2-5. https://doi.org/10.1016/j.joen.2014.01.018
  19. Kim SG, Zheng Y, Zhou J, Chen M, Embree MC, Song K, Jiang N, Mao JJ. Dentin and dental pulp regeneration by the patient's endogenous cells. Endod Topics. 2013;28:106-17. https://doi.org/10.1111/etp.12037
  20. Mao JJ, Kim SG, Zhou J, Ye L, Cho S, Suzuki T, Fu SY, Yang R, Zhou X. Regenerative endodontics: barriers and strategies for clinical translation. Dent Clin North Am. 2012;56:639-49. https://doi.org/10.1016/j.cden.2012.05.005
  21. Smith JG, Smith AJ, Shelton RM, Cooper PR. Recruitment of dental pulp cells by dentine and pulp extracellular matrix components. Exp Cell Res. 2012; 318:2397-406. https://doi.org/10.1016/j.yexcr.2012.07.008
  22. Torabinejad M, Turman M. Revitalization of tooth with necrotic pulp and open apex by using platelet-rich plasma: a case report. J Endod. 2011;37:265-8. https://doi.org/10.1016/j.joen.2010.11.004
  23. Reynolds K, Johnson JD, Cohenca N. Pulp revascularization of necrotic bilateral bicuspids using a modified novel technique to eliminate potential coronal discolouration: a case report. Int Endod J. 2009;42:84-92. https://doi.org/10.1111/j.1365-2591.2008.01467.x
  24. Hoshino E, Kurihara-Ando N, Sato I, Uematsu H, Sato M, Kota K, Iwaku M. Invitro antibacterial susceptibility of bacteria taken from infected root dentine to a mixture of ciprofloxacin, metronidazole and minocycline. Int Endod J. 1996;29:125-30. https://doi.org/10.1111/j.1365-2591.1996.tb01173.x
  25. Marconyak LJ, Jr., Kirkpatrick TC, Roberts HW, Roberts MD, Aparicio A, Himel VT, Sabey KA. A comparison of coronal tooth discoloration elicited by various endodontic reparative materials. J Endod. 2016;42:470-3. https://doi.org/10.1016/j.joen.2015.10.013
  26. Iwaya S, Ikawa M, Kubota M. Revascularization of an immature permanent tooth with periradicular abscess after luxation. Dent Traumatol. 2011;27:55-8. https://doi.org/10.1111/j.1600-9657.2010.00963.x
  27. Andreasen JO, Farik B, Munksgaard EC. Long-term calcium hydroxide as a root canal dressing may increase risk of root fracture. Dent Traumatol. 2002;18:134-7. https://doi.org/10.1034/j.1600-9657.2002.00097.x
  28. Sahebi S, Moazami F, Abbott P. The effects of short-term calcium hydroxide application on the strength of dentine. Dent Traumatol. 2010;26:43-6. https://doi.org/10.1111/j.1600-9657.2009.00834.x
  29. Andukuri A, Kushwaha M, Tambralli A, Anderson J, Dean D, Berry J, Sohn Y, Yoon Y, Brott B, Jun HW. A hybrid biomimetic nanomatrix composed of electrospun polycaprolactone and bioactive peptide amphiphiles for cardiovascular implants. Acta Biomater. 2011;7:225-33. https://doi.org/10.1016/j.actbio.2010.08.013
  30. Ban K, Park HJ, Kim S, Andukuri A, Cho KW, Hwang JW, Cha HJ, Kim SY, Kim WS, Jun HW, Yoon YS. Cell therapy with embryonic stem cell-derived cardiomyocytes encapsulated in injectable nanomatrix gel enhances cell engraftment and promotes cardiac repair. ACS Nano. 2014;8:10815-25. https://doi.org/10.1021/nn504617g
  31. Ingber DE, Mow VC, Butler D, Niklason L, Huard J, Mao J, Yannas I, Kaplan D, Vunjak-Novakovic G. Tissue engineering and developmental biology: going biomimetic. Tissue Eng. 2006;12:3265-83. https://doi.org/10.1089/ten.2006.12.3265
  32. Linde A. The extracellular matrix of the dental pulp and dentin. J Dent Res. 1985;64 Spec No:523-9. https://doi.org/10.1177/002203458506400405
  33. Nanci A. Ten Cate's oral histology: development, structure, and function. 7th ed. St. Louis: Mosby Elsevier; 2008.
  34. Liu H, Gronthos S, Shi S. Dental pulp stem cells. Methods Enzymol. 2006;419: 99-113.
  35. Tatullo M, Marrelli M, Shakesheff KM, White LJ. Dental pulp stem cells: function, isolation and applications in regenerative medicine. J Tissue Eng Regen Med. 2015;9:1205-16. https://doi.org/10.1002/term.1899
  36. Hargreaves KM, Giesler T, Henry M, Wang Y. Regeneration potential of the young permanent tooth: what does the future hold? J Endod. 2008;34:S51-6. https://doi.org/10.1016/j.joen.2008.02.032
  37. Trope M. Regenerative potential of dental pulp. J Endod. 2008;34:S13-7. https://doi.org/10.1016/j.joen.2008.04.001
  38. Huang GT, Sonoyama W, Liu Y, Liu H, Wang S, Shi S. The hidden treasure in apical papilla: the potential role in pulp/dentin regeneration and bioroot engineering. J Endod. 2008;34:645-51. https://doi.org/10.1016/j.joen.2008.03.001
  39. AAE Clinical Considerations for a Regenerative Procedure [http://www.aae.org/uploadedfiles/clinical_resources/regenerative_endodontics/considerationsregendo7-31-13.pdf]. Accessed 20 Mar 2016.
  40. Ring KC, Murray PE, Namerow KN, Kuttler S, Garcia-Godoy F. The comparison of the effect of endodontic irrigation on cell adherence to root canal dentin. J Endod. 2008;34:1474-9. https://doi.org/10.1016/j.joen.2008.09.001
  41. Galler KM, D'Souza RN, Federlin M, Cavender AC, Hartgerink JD, Hecker S, Schmalz G. Dentin conditioning codetermines cell fate in regenerative endodontics. J Endod. 2011;37:1536-41. https://doi.org/10.1016/j.joen.2011.08.027
  42. Dabbagh B, Alvaro E, Vu DD, Rizkallah J, Schwartz S. Clinical complications in the revascularization of immature necrotic permanent teeth. Pediatr Dent. 2012;34:414-7.
  43. Torabinejad M, Hong CU, Lee SJ, Monsef M, Pitt Ford TR. Investigation of mineral trioxide aggregate for root-end filling in dogs. J Endod. 1995;21:603-8. https://doi.org/10.1016/S0099-2399(06)81112-X
  44. Bogen G, Kim JS, Bakland LK. Direct pulp capping with mineral trioxide aggregate: an observational study. J Am Dent Assoc. 2008;139:305-15. quiz 305-315. https://doi.org/10.14219/jada.archive.2008.0160
  45. Olsson H, Petersson K, Rohlin M. Formation of a hard tissue barrier after pulp cappings in humans. A systematic review. Int Endod J. 2006;39:429-42. https://doi.org/10.1111/j.1365-2591.2006.01116.x
  46. Sato T, Hoshino E, Uematsu H, Noda T. In vitro antimicrobial susceptibility to combinations of drugs on bacteria from carious and endodontic lesions of human deciduous teeth. Oral Microbiol Immunol. 1993;8:172-6. https://doi.org/10.1111/j.1399-302X.1993.tb00661.x
  47. Kim ST, Abbott PV, McGinley P. The effects of Ledermix paste on discolouration of immature teeth. Int Endod J. 2000;33:233-7. https://doi.org/10.1046/j.1365-2591.2000.00277.x
  48. Nosrat A, Li KL, Vir K, Hicks ML, Fouad AF. Is pulp regeneration necessary for root maturation? J Endod. 2013;39:1291-5. https://doi.org/10.1016/j.joen.2013.06.019
  49. Ruparel NB, Teixeira FB, Ferraz CC, Diogenes A. Direct effect of intracanal medicaments on survival of stem cells of the apical papilla. J Endod. 2012; 38:1372-5. https://doi.org/10.1016/j.joen.2012.06.018
  50. Frank AL. Therapy for the divergent pulpless tooth by continued apical formation. J Am Dent Assoc. 1966;72:87-93. https://doi.org/10.14219/jada.archive.1966.0017
  51. Cvek M. Prognosis of luxated non-vital maxillary incisors treated with calcium hydroxide and filled with gutta-percha. A retrospective clinical study. Endod Dent Traumatol. 1992;8:45-55. https://doi.org/10.1111/j.1600-9657.1992.tb00228.x
  52. Chueh LH, Ho YC, Kuo TC, Lai WH, Chen YH, Chiang CP. Regenerative endodontic treatment for necrotic immature permanent teeth. J Endod. 2009;35:160-4. https://doi.org/10.1016/j.joen.2008.10.019
  53. Chueh LH, Huang GT. Immature teeth with periradicular periodontitis or abscess undergoing apexogenesis: a paradigm shift. J Endod. 2006; 32:1205-13. https://doi.org/10.1016/j.joen.2006.07.010
  54. Chen MY, Chen KL, Chen CA, Tayebaty F, Rosenberg PA, Lin LM. Responses of immature permanent teeth with infected necrotic pulp tissue and apical periodontitis/abscess to revascularization procedures. Int Endod J. 2012;45: 294-305. https://doi.org/10.1111/j.1365-2591.2011.01978.x
  55. Rosenberg B, Murray PE, Namerow K. The effect of calcium hydroxide root filling on dentin fracture strength. Dent Traumatol. 2007;23:26-9.
  56. Yassen GH, Vail MM, Chu TG, Platt JA. The effect of medicaments used in endodontic regeneration on root fracture and microhardness of radicular dentine. Int Endod J. 2013;46:688-95. https://doi.org/10.1111/iej.12046
  57. Webber RT. Apexogenesis versus apexification. Dent Clin North Am. 1984;28: 669-97.
  58. Myers WC, Fountain SB. Dental pulp regeneration aided by blood and blood substitutes after experimentally induced periapical infection. Oral Surg Oral Med Oral Pathol. 1974;37:441-50. https://doi.org/10.1016/0030-4220(74)90119-4
  59. AAE. Regenerative endodontics. In: Endodontics colleagues for excellence. Chicago: American Association of Endodontists; 2013. p. 1-8.
  60. Petrino JA, Boda KK, Shambarger S, Bowles WR, McClanahan SB. Challenges in regenerative endodontics: a case series. J Endod. 2010;36:536-41. https://doi.org/10.1016/j.joen.2009.10.006
  61. Nosrat A, Seifi A, Asgary S. Regenerative endodontic treatment (revascularization) for necrotic immature permanent molars: a review and report of two cases with a new biomaterial. J Endod. 2011;37:562-7. https://doi.org/10.1016/j.joen.2011.01.011
  62. Bose R, Nummikoski P, Hargreaves K. A retrospective evaluation of radiographic outcomes in immature teeth with necrotic root canal systems treated with regenerative endodontic procedures. J Endod. 2009;35:1343-9. https://doi.org/10.1016/j.joen.2009.06.021
  63. Saoud TM, Zaazou A, Nabil A, Moussa S, Aly HM, Okazaki K, Rosenberg PA, Lin LM. Histological observations of pulpal replacement tissue in immature dog teeth after revascularization of infected pulps. Dent Traumatol. 2015;31:243-9. https://doi.org/10.1111/edt.12169
  64. Yamauchi N, Nagaoka H, Yamauchi S, Teixeira FB, Miguez P, Yamauchi M. Immunohistological characterization of newly formed tissues after regenerative procedure in immature dog teeth. J Endod. 2011;37:1636-41. https://doi.org/10.1016/j.joen.2011.08.025
  65. Yamauchi N, Yamauchi S, Nagaoka H, Duggan D, Zhong S, Lee SM, Teixeira FB, Yamauchi M. Tissue engineering strategies for immature teeth with apical periodontitis. J Endod. 2011;37:390-7. https://doi.org/10.1016/j.joen.2010.11.010
  66. Kobayashi M, Kagawa T, Takano R, Itagaki S, Hirano T, Iseki K. Effect of medium pH on the cytotoxicity of hydrophilic statins. J Pharm Pharm Sci. 2007;10:332-9.
  67. Chuensombat S, Khemaleelakul S, Chattipakorn S, Srisuwan T. Cytotoxic effects and antibacterial efficacy of a 3-antibiotic combination: an in vitro study. J Endod. 2013;39:813-9. https://doi.org/10.1016/j.joen.2012.11.041
  68. Labban N, Yassen GH, Windsor LJ, Platt JA. The direct cytotoxic effects of medicaments used in endodontic regeneration on human dental pulp cells. Dent Traumatol. 2014;30:429-34. https://doi.org/10.1111/edt.12108
  69. Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9:641-50. https://doi.org/10.1002/jor.1100090504
  70. Huang GT, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res. 2009;88:792-806. https://doi.org/10.1177/0022034509340867
  71. Sedgley CM, Botero TM. Dental stem cells and their sources. Dent Clin North Am. 2012;56:549-61. https://doi.org/10.1016/j.cden.2012.05.004
  72. Hristov M, Erl W, Weber PC. Endothelial progenitor cells: mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol. 2003;23:1185-9. https://doi.org/10.1161/01.ATV.0000073832.49290.B5
  73. Sedgley CM, Cherkas P, Chogle SMA, Geisler TM, Hargreaves KM, Paranjpe AK, Yamagishi VT-K. Regenerative endodontics. In: Endodontics: colleagues for excellence, vol. Spring. Chicago: American Association of Endodontists Foundation; 2013.
  74. Iwaya SI, Ikawa M, Kubota M. Revascularization of an immature permanent tooth with apical periodontitis and sinus tract. Dent Traumatol. 2001;17:185-7. https://doi.org/10.1034/j.1600-9657.2001.017004185.x
  75. Kling M, Cvek M, Mejare I. Rate and predictability of pulp revascularization in therapeutically reimplanted permanent incisors. Endod Dent Traumatol. 1986;2:83-9. https://doi.org/10.1111/j.1600-9657.1986.tb00132.x
  76. Huang GT, Garcia-Godoy F. Missing Concepts in De Novo Pulp Regeneration. J Dent Res. 2014;93:717-24. https://doi.org/10.1177/0022034514537829
  77. Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S. Stem cell properties of human dental pulp stem cells. J Dent Res. 2002;81:531-5. https://doi.org/10.1177/154405910208100806
  78. Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, Liu H, Gronthos S, Wang CY, Wang S, Shi S. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One. 2006;1, e79. https://doi.org/10.1371/journal.pone.0000079
  79. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A. 2003;100:5807-12. https://doi.org/10.1073/pnas.0937635100
  80. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000; 97:13625-30. https://doi.org/10.1073/pnas.240309797
  81. Nakashima M, Akamine A. The application of tissue engineering to regeneration of pulp and dentin in endodontics. J Endod. 2005;31:711-8. https://doi.org/10.1097/01.don.0000164138.49923.e5
  82. Nosrat IV, Smith CA, Mullally P, Olson L, Nosrat CA. Dental pulp cells provide neurotrophic support for dopaminergic neurons and differentiate into neurons in vitro; implications for tissue engineering and repair in the nervous system. Eur J Neurosci. 2004;19:2388-98. https://doi.org/10.1111/j.0953-816X.2004.03314.x
  83. Ishizaka R, Iohara K, Murakami M, Fukuta O, Nakashima M. Regeneration of dental pulp following pulpectomy by fractionated stem/progenitor cells from bone marrow and adipose tissue. Biomaterials. 2012;33:2109-18. https://doi.org/10.1016/j.biomaterials.2011.11.056
  84. Huang GT, Al-Habib M, Gauthier P. Challenges of stem cell-based pulp and dentin regeneration: a clinical perspective. Endod Topics. 2013;28:51-60. https://doi.org/10.1111/etp.12035
  85. Iohara K, Zheng L, Wake H, Ito M, Nabekura J, Wakita H, Nakamura H, Into T, Matsushita K, Nakashima M. A novel stem cell source for vasculogenesis in ischemia: subfraction of side population cells from dental pulp. Stem Cells. 2008;26:2408-18. https://doi.org/10.1634/stemcells.2008-0393
  86. Nakashima M, Iohara K, Sugiyama M. Human dental pulp stem cells with highly angiogenic and neurogenic potential for possible use in pulp regeneration. Cytokine Growth Factor Rev. 2009;20:435-40. https://doi.org/10.1016/j.cytogfr.2009.10.012
  87. Gruetter CA, Barry BK, McNamara DB, Gruetter DY, Kadowitz PJ, Ignarro L. Relaxation of bovine coronary artery and activation of coronary arterial guanylate cyclase by nitric oxide, nitroprusside and a carcinogenic nitrosoamine. J Cyclic Nucleotide Res. 1979;5:211-24.
  88. Kimura H, Esumi H. Reciprocal regulation between nitric oxide and vascular endothelial growth factor in angiogenesis. Acta Biochim Pol. 2003;50:49-59.
  89. Sun B, Slomberg DL, Chudasama SL, Lu Y, Schoenfisch MH. Nitric oxide-releasing dendrimers as antibacterial agents. Biomacromolecules. 2012;13:3343-54. https://doi.org/10.1021/bm301109c
  90. Backlund CJ, Worley BV, Schoenfisch MH. Anti-biofilm action of nitric oxide-releasing alkyl-modified poly(amidoamine) dendrimers against Streptococcus mutans. Acta Biomater. 2016;29:198-205. https://doi.org/10.1016/j.actbio.2015.10.021
  91. Nakashima M, Nagasawa H, Yamada Y, Reddi AH. Regulatory role of transforming growth factor-beta, bone morphogenetic protein-2, and protein-4 on gene expression of extracellular matrix proteins and differentiation of dental pulp cells. Dev Biol. 1994;162:18-28. https://doi.org/10.1006/dbio.1994.1063
  92. Nakashima M, Reddi AH. The application of bone morphogenetic proteins to dental tissue engineering. Nat Biotechnol. 2003;21:1025-32. https://doi.org/10.1038/nbt864
  93. Nakashima M. Induction of dentin formation on canine amputated pulp by recombinant human bone morphogenetic proteins (BMP)-2 and -4. J Dent Res. 1994;73:1515-22. https://doi.org/10.1177/00220345940730090601
  94. Liu J, Jin T, Ritchie HH, Smith AJ, Clarkson BH. In vitro differentiation and mineralization of human dental pulp cells induced by dentin extract. In Vitro Cell Dev Biol Anim. 2005;41:232-8.
  95. Liu J, Jin TC, Chang S, Czajka-Jakubowska A, Clarkson BH. Adhesion and growth of dental pulp stem cells on enamel-like fluorapatite surfaces. J Biomed Mater Res A. 2011;96:528-34.
  96. Wang X, Jin T, Chang S, Zhang Z, Czajka-Jakubowska A, Nor JE, Clarkson BH, Ni L, Liu J. In vitro differentiation and mineralization of dental pulp stem cells on enamel-like fluorapatite surfaces. Tissue Eng Part C Methods. 2012; 18:821-30. https://doi.org/10.1089/ten.tec.2011.0624
  97. Slavkin HC, Bartold PM. Challenges and potential in tissue engineering. Periodontol 2000. 2006;41:9-15. https://doi.org/10.1111/j.1600-0757.2006.00172.x
  98. Anitua E, Sanchez M, Nurden AT, Nurden P, Orive G, Andia I. New insights into and novel applications for platelet-rich fibrin therapies. Trends Biotechnol. 2006;24:227-34. https://doi.org/10.1016/j.tibtech.2006.02.010
  99. Ogino Y, Ayukawa Y, Kukita T, Koyano K. The contribution of platelet-derived growth factor, transforming growth factor-beta1, and insulin-like growth factor-I in platelet-rich plasma to the proliferation of osteoblast-like cells. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101:724-9. https://doi.org/10.1016/j.tripleo.2005.08.016
  100. Lee UL, Jeon SH, Park JY, Choung PH. Effect of platelet-rich plasma on dental stem cells derived from human impacted third molars. Regen Med. 2011;6:67-79.
  101. Del Fabbro M, Lolato A, Bucchi C, Taschieri S, Weinstein RL. Autologous platelet concentrates for pulp and dentin regeneration: a literature review of animal studies. J Endod. 2016;42:250-7. https://doi.org/10.1016/j.joen.2015.10.012
  102. Iohara K, Imabayashi K, Ishizaka R, Watanabe A, Nabekura J, Ito M, Matsushita K, Nakamura H, Nakashima M. Complete pulp regeneration after pulpectomy by transplantation of CD105+ stem cells with stromal cellderived factor-1. Tissue Eng Part A. 2011;17:1911-20. https://doi.org/10.1089/ten.tea.2010.0615
  103. Lapidot T, Dar A, Kollet O. How do stem cells find their way home? Blood. 2005;106:1901-10. https://doi.org/10.1182/blood-2005-04-1417
  104. Kavanagh DP, Kalia N. Hematopoietic stem cell homing to injured tissues. Stem Cell Rev. 2011;7:672-82. https://doi.org/10.1007/s12015-011-9240-z
  105. Hopman RK, DiPersio JF. Advances in stem cell mobilization. Blood Rev. 2014;28:31-40. https://doi.org/10.1016/j.blre.2014.01.001
  106. Zhou J, Shi S, Shi Y, Xie H, Chen L, He Y, Guo W, Wen L, Jin Y. Role of bone marrow-derived progenitor cells in the maintenance and regeneration of dental mesenchymal tissues. J Cell Physiol. 2011;226:2081-90. https://doi.org/10.1002/jcp.22538
  107. Huang GT, Yamaza T, Shea LD, Djouad F, Kuhn NZ, Tuan RS, Shi S. Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng Part A. 2010;16:605-15. https://doi.org/10.1089/ten.tea.2009.0518
  108. Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. 2003;24:4385-415. https://doi.org/10.1016/S0142-9612(03)00343-0
  109. Weber LM, Hayda KN, Haskins K, Anseth KS. The effects of cell-matrix interactions on encapsulated beta-cell function within hydrogels functionalized with matrixderived adhesive peptides. Biomaterials. 2007;28:3004-11. https://doi.org/10.1016/j.biomaterials.2007.03.005
  110. Park KH, Na K, Jung SY, Kim SW, Park KH, Cha KY, Chung HM. Insulinoma cell line (MIN6) adhesion and spreading mediated by Arg-Gly-Asp (RGD) sequence conjugated in thermo-reversible gel. J Biosci Bioeng. 2005;99:598-602. https://doi.org/10.1263/jbb.99.598
  111. Baroli B. Photopolymerization of biomaterials: issues and potentialities in drug delivery, tissue engineering, and cell encapsulation applications. J Chem Technol Biotechnol. 2006;81:491-9. https://doi.org/10.1002/jctb.1468
  112. King A, Sandler S, Andersson A. The effect of host factors and capsule composition on the cellular overgrowth on implanted alginate capsules. J Biomed Mater Res. 2001;57:374-83. https://doi.org/10.1002/1097-4636(20011205)57:3<374::AID-JBM1180>3.0.CO;2-L
  113. Anderson J, Patterson J, Vines J, Javed A, Gilbert S, Jun H. Biphasic peptide amphiphile nanomatrix embedded with hydroxyapatite nanoparticles for stimulated osteoinductive response. ACS Nano. 2011;5:9463-79. https://doi.org/10.1021/nn203247m
  114. Jun H-W, Yuwono V, Paramonov SE, Hartgerink JD. Enzyme-mediated degradation of peptide-amphiphile nanofiber networks. Adv Mater. 2005;17:2612-7. https://doi.org/10.1002/adma.200500855
  115. Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science. 2001;294:1684-8. https://doi.org/10.1126/science.1063187
  116. Anderson JM, Kushwaha M, Tambralli A, Bellis SL, Camata RP, Jun HW. Osteogenic differentiation of human mesenchymal stem cells directed by extracellular matrix-mimicking ligands in a biomimetic self-assembled peptide amphiphile nanomatrix. Biomacromolecules. 2009;10:2935-44. https://doi.org/10.1021/bm9007452
  117. Anderson JM, Andukuri A, Lim DJ, Jun HW. Modulating the gelation properties of self-assembling peptide amphiphiles. ACS Nano. 2009;3:3447-54. https://doi.org/10.1021/nn900884n
  118. Kushwaha M, Anderson JM, Bosworth CA, Andukuri A, Minor WP, Lancaster JR, Jr., Anderson PG, Brott BC, Jun HW. A nitric oxide releasing, self assembled peptide amphiphile matrix that mimics native endothelium for coating implantable cardiovascular devices. Biomaterials. 2010;31:1502-8. https://doi.org/10.1016/j.biomaterials.2009.10.051
  119. Kaushik SN, Scoffield J, Andukuri A, Alexander GC, Walker T, Kim S, Choi SC, Brott BC, Eleazer PD, Lee JY, et al. Evaluation of Ciprofloxacin and Metronidazole Encapsulated Biomimetic Nanomatrix Gel on Enterococcus faecalis and Treponema denticola. Biomater Res. 2015;19:9. https://doi.org/10.1186/s40824-015-0032-4
  120. Torabinejad M, Corr R, Buhrley M, Wright K, Shabahang S. An animal model to study regenerative endodontics. J Endod. 2011;37:197-202. https://doi.org/10.1016/j.joen.2010.10.011
  121. Torabinejad M, Bakland LK. An animal model for the study of immunopathogenesis of periapical lesions. J Endod. 1978;4:273-7. https://doi.org/10.1016/S0099-2399(78)80143-5
  122. Zhao C, Hosoya A, Kurita H, Hu T, Hiraga T, Ninomiya T, Yoshiba K, Yoshiba N, Takahashi M, Kurashina K, et al. Immunohistochemical study of hard tissue formation in the rat pulp cavity after tooth replantation. Arch Oral Biol. 2007;52:945-53. https://doi.org/10.1016/j.archoralbio.2007.04.015
  123. He T, Kiliaridis S. Craniofacial growth in the ferret (Mustela putorius furo)-a cephalometric study. Arch Oral Biol. 2004;49:837-48. https://doi.org/10.1016/j.archoralbio.2004.04.009
  124. Wilson G. Timing of apical closure of the maxillary canine and mandibular first molar teeth of cats. J Vet Dent. 1999;16:19-21. https://doi.org/10.1177/089875649901600102
  125. Khademi AA, Dianat O, Mahjour F, Razavi SM, Younessian F. Outcomes of revascularization treatment in immature dog's teeth. Dent Traumatol. 2014; 30:374-9. https://doi.org/10.1111/edt.12100
  126. Yildirim S, Can A, Arican M, Embree MC, Mao JJ. Characterization of dental pulp defect and repair in a canine model. Am J Dent. 2011;24:331-5.
  127. Wilson G. Implications of the time of apical closure in relation to tooth fracture in dogs. Aus Vet Practit. 1996;26:65-71.

Cited by

  1. Platelet-rich plasma for regeneration of neural feedback pathways around dental implants: a concise review and outlook on future possibilities vol.9, pp.1, 2016, https://doi.org/10.1038/ijos.2017.1
  2. An Overview of Biomaterials in Periodontology and Implant Dentistry vol.2017, pp.None, 2016, https://doi.org/10.1155/2017/1948241
  3. Current challenges in human tooth revitalization vol.28, pp.1, 2017, https://doi.org/10.3233/bme-171637
  4. Synthesis and Biocompatibility Characterizations of in Situ Chondroitin Sulfate-Gelatin Hydrogel for Tissue Engineering vol.15, pp.1, 2016, https://doi.org/10.1007/s13770-017-0089-3
  5. Functionalization of PCL-3D electrospun nanofibrous scaffolds for improved BMP2-induced bone formation vol.10, pp.None, 2018, https://doi.org/10.1016/j.apmt.2017.12.004
  6. Effects of concentrated growth factor on proliferation, migration, and differentiation of human dental pulp stem cells in vitro vol.9, pp.None, 2018, https://doi.org/10.1177/2041731418817505
  7. Effects of the nitric oxide releasing biomimetic nanomatrix gel on pulp-dentin regeneration: Pilot study vol.13, pp.10, 2018, https://doi.org/10.1371/journal.pone.0205534
  8. Recent trends in bioinks for 3D printing vol.22, pp.1, 2016, https://doi.org/10.1186/s40824-018-0122-1
  9. 3D Printing of Silk Fibroin for Biomedical Applications vol.12, pp.3, 2016, https://doi.org/10.3390/ma12030504
  10. Effects of Nel-like molecule-1 and bone morphogenetic protein 2 combination on rat pulp repair vol.50, pp.3, 2016, https://doi.org/10.1007/s10735-019-09822-2
  11. Remineralization, Regeneration, and Repair of Natural Tooth Structure: Influences on the Future of Restorative Dentistry Practice vol.5, pp.10, 2016, https://doi.org/10.1021/acsbiomaterials.9b00591
  12. Effects of motion direction and power of Er,Cr:YSGG laser on pull-out bond strength of fiber post to root dentin in endodontically-treated single-canal premolar teeth vol.23, pp.1, 2016, https://doi.org/10.1186/s40824-019-0165-y
  13. Enterococcus faecalis and Staphylococcus aureus stimulate nitric oxide production in macrophages and fibroblasts in vitro vol.19, pp.None, 2020, https://doi.org/10.20396/bjos.v19i0.8657039
  14. Nanofibers as drug-delivery systems for infection control in dentistry vol.17, pp.7, 2016, https://doi.org/10.1080/17425247.2020.1762564
  15. Development of an antibacterial nanocomposite hydrogel for human dental pulp engineering vol.8, pp.36, 2016, https://doi.org/10.1039/d0tb00989j
  16. Effectiveness of Autologous Platelet Concentrates in Management of Young Immature Necrotic Permanent Teeth—A Systematic Review and Meta-Analysis vol.9, pp.10, 2020, https://doi.org/10.3390/cells9102241
  17. Harnessing biomolecules for bioinspired dental biomaterials vol.8, pp.38, 2016, https://doi.org/10.1039/d0tb01456g
  18. Local Drug Delivery Systems for Vital Pulp Therapy: A New Hope vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/5584268
  19. Different Approaches to the Regeneration of Dental Tissues in Regenerative Endodontics vol.11, pp.4, 2021, https://doi.org/10.3390/app11041699
  20. Novel Approaches for the Treatment of Necrotic Immature Teeth Using Regenerative Endodontic Procedures: A Systematic Review and Meta-Analysis vol.11, pp.11, 2016, https://doi.org/10.3390/app11115199
  21. What is the best long-term treatment modality for immature permanent teeth with pulp necrosis and apical periodontitis? vol.22, pp.3, 2016, https://doi.org/10.1007/s40368-020-00575-1
  22. Doxycycline-Loaded Nitric Oxide-Releasing Nanomatrix Gel in Replanted Rat Molar on Pulp Regeneration vol.11, pp.13, 2016, https://doi.org/10.3390/app11136041
  23. Decellularized and biological scaffolds in dental and craniofacial tissue engineering: a comprehensive overview vol.15, pp.None, 2021, https://doi.org/10.1016/j.jmrt.2021.08.083
  24. New Biodegradable Drug Delivery System for Patients with Dry Eye vol.35, pp.6, 2016, https://doi.org/10.3341/kjo.2021.0126