DOI QR코드

DOI QR Code

Antifibrotic therapies to control cardiac fibrosis

  • Fan, Zhaobo (Department of Materials Science and Engineering, The Ohio State University) ;
  • Guan, Jianjun (Department of Materials Science and Engineering, The Ohio State University)
  • Received : 2016.03.22
  • Accepted : 2016.05.13
  • Published : 2016.06.01

Abstract

Cardiac fibrosis occurs naturally after myocardial infarction. While the initially formed fibrotic tissue prevents the infarcted heart tissue from rupture, the progression of cardiac fibrosis continuously expands the size of fibrotic tissue and causes cardiac function decrease. Cardiac fibrosis eventually evolves the infarcted hearts into heart failure. Inhibiting cardiac fibrosis from progressing is critical to prevent heart failure. However, there is no efficient therapeutic approach currently available. Myofibroblasts are primarily responsible for cardiac fibrosis. They are formed by cardiac fibroblast differentiation, fibrocyte differentiation, epithelial to mesenchymal transdifferentiation, and endothelial to mesenchymal transition, driven by cytokines such as transforming growth factor beta ($TGF-{\beta}$), angiotensin II and platelet-derived growth factor (PDGF). The approaches that inhibit myofibroblast formation have been demonstrated to prevent cardiac fibrosis, including systemic delivery of antifibrotic drugs, localized delivery of biomaterials, localized delivery of biomaterials and antifibrotic drugs, and localized delivery of cells using biomaterials. This review addresses current progresses in cardiac fibrosis therapies.

Keywords

Acknowledgement

Supported by : National Science Foundation, National Institutes for Health, American Heart Association, Ohio State University

References

  1. Dobaczewski M, de Haan JJ, Frangogiannis NG. The extracellular matrix modulates fibroblast phenotype and function in the infarcted myocardium. J Cardiovasc Transl Res. 2012;5:837-47. https://doi.org/10.1007/s12265-012-9406-3
  2. Gonzalez A, Ravassa S, Beaumont J, Lopez B, Diez J. New targets to treat the structural remodeling of the myocardium. J Am Coll Cardiol. 2011;58:1833-43. https://doi.org/10.1016/j.jacc.2011.06.058
  3. van den Borne SW, Diez J, Blankesteijn WM, Verjans J, Hofstra L, Narula J. Myocardial remodeling after infarction: the role of myofibroblasts. Nat Rev Cardiol. 2010;7:30-7. https://doi.org/10.1038/nrcardio.2009.199
  4. Yarbrough WM, Mukherjee R, Stroud RE, Rivers WT, Oelsen JM, Dixon JA, et al. Progressive induction of left ventricular pressure overload in a large animal model elicits myocardial remodeling and a unique matrix signature. J Thorac Cardiovasc Surg. 2012;143:215-23. https://doi.org/10.1016/j.jtcvs.2011.09.032
  5. Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci. 2014;71:549-74. https://doi.org/10.1007/s00018-013-1349-6
  6. Janicki JS, Brower GL, Gardner JD, Chancey AL, Stewart Jr JA. The dynamic interaction between matrix metalloproteinase activity and adverse myocardial remodeling. Heart Fail Rev. 2004;9:33-42. https://doi.org/10.1023/B:HREV.0000011392.03037.7e
  7. Spinale FG, Janicki JS, Zile MR. Membrane-associated matrix proteolysis and heart failure. Circ Res. 2013;112:195-208. https://doi.org/10.1161/CIRCRESAHA.112.266882
  8. Tsuruda T, Costello-Boerrigter LC, Burnett Jr JC. Matrix metalloproteinases: pathways of induction by bioactive molecules. Heart Fail Rev. 2004;9:53-61. https://doi.org/10.1023/B:HREV.0000011394.34355.bb
  9. Creemers EE, Pinto YM. Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovasc Res. 2011;89:265-72. https://doi.org/10.1093/cvr/cvq308
  10. Leask A. Getting to the heart of the matter: new insights into cardiac fibrosis. Circ Res. 2015;116:1269-76. https://doi.org/10.1161/CIRCRESAHA.116.305381
  11. Nag AC. Study of non-muscle cells of the adult mammalian heart: a fine structural analysis and distribution. Cytobios. 1980;28:41-61.
  12. Shinde AV, Frangogiannis NG. Fibroblasts in myocardial infarction: a role in inflammation and repair. J Mol Cell Cardiol. 2014;70:74-82. https://doi.org/10.1016/j.yjmcc.2013.11.015
  13. Willems IE, Havenith MG, De Mey JG, Daemen MJ. The alpha-smooth muscle actin-positive cells in healing human myocardial scars. Am J Pathol. 1994;145:868-75.
  14. Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med. 1994;1:71-81.
  15. Chesney J, Bucala R. Peripheral blood fibrocytes: novel fibroblast-like cells that present antigen and mediate tissue repair. Biochem Soc Trans. 1997;25:520-4. https://doi.org/10.1042/bst0250520
  16. Mori L, Bellini A, Stacey MA, Schmidt M, Mattoli S. Fibrocytes contribute to the myofibroblast population in wounded skin and originate from the bone marrow. Exp Cell Res. 2005;304:81-90. https://doi.org/10.1016/j.yexcr.2004.11.011
  17. Aiba S, Tagami H. Inverse correlation between CD34 expression and proline- 4-hydroxylase immunoreactivity on spindle cells noted in hypertrophic scars and keloids. J Cutan Pathol. 1997;24:65-9. https://doi.org/10.1111/j.1600-0560.1997.tb01098.x
  18. Jain R, Shaul PW, Borok Z, Willis BC. Endothelin-1 induces alveolar epithelialmesenchymal transition through endothelin type A receptor-mediated production of TGF-beta1. Am J Respir Cell Mol Biol. 2007;37:38-47. https://doi.org/10.1165/rcmb.2006-0353OC
  19. Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest. 2003;112:1776-84. https://doi.org/10.1172/JCI200320530
  20. Doerner AM, Zuraw BL. TGF-beta1 induced epithelial to mesenchymal transition (EMT) in human bronchial epithelial cells is enhanced by IL-1beta but not abrogated by corticosteroids. Respir Res. 2009;10:1465-9921.
  21. Yamauchi Y, Kohyama T, Takizawa H, Kamitani S, Desaki M, Takami K, et al. Tumor necrosis factor-alpha enhances both epithelial-mesenchymal transition and cell contraction induced in A549 human alveolar epithelial cells by transforming growth factor-beta1. Exp Lung Res. 2010;36:12-24. https://doi.org/10.3109/01902140903042589
  22. Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med. 2007;13:952-61. https://doi.org/10.1038/nm1613
  23. Maleszewska M, Moonen JR, Huijkman N, van de Sluis B, Krenning G, Harmsen MC. IL-1beta and TGFbeta2 synergistically induce endothelial to mesenchymal transition in an NFkappaB-dependent manner. Immunobiology. 2013;218:443-54. https://doi.org/10.1016/j.imbio.2012.05.026
  24. Dai H, Huang H, Wang SL, Xu X, Jian Y, Cui WH, et al. Role of tumor necrosis factor alpha in endothelial-mesenchymal transition in vitro. Zhonghua Shao Shang Za Zhi. 2012;28:19-24.
  25. Tan SM, Zhang Y, Connelly KA, Gilbert RE, Kelly DJ. Targeted inhibition of activin receptor-like kinase 5 signaling attenuates cardiac dysfunction following myocardial infarction. Am J Physiol Heart Circ Physiol. 2010;298: H1415-25. https://doi.org/10.1152/ajpheart.01048.2009
  26. Sun Y, Zhang JQ, Zhang J, Ramires FJ. Angiotensin II, transforming growth factor-beta1 and repair in the infarcted heart. J Mol Cell Cardiol. 1998;30: 1559-69. https://doi.org/10.1006/jmcc.1998.0721
  27. Yu CM, Tipoe GL, Wing-Hon Lai K, Lau CP. Effects of combination of angiotensin-converting enzyme inhibitor and angiotensin receptor antagonist on inflammatory cellular infiltration and myocardial interstitial fibrosis after acute myocardial infarction. J Am Coll Cardiol. 2001;38:1207-15. https://doi.org/10.1016/S0735-1097(01)01518-2
  28. Campbell SE, Katwa LC. Angiotensin II stimulated expression of transforming growth factor-beta1 in cardiac fibroblasts and myofibroblasts. J Mol Cell Cardiol. 1997;29:1947-58. https://doi.org/10.1006/jmcc.1997.0435
  29. Gao X, He X, Luo B, Peng L, Lin J, Zuo Z. Angiotensin II increases collagen I expression via transforming growth factor-beta1 and extracellular signalregulated kinase in cardiac fibroblasts. Eur J Pharmacol. 2009;606:115-20. https://doi.org/10.1016/j.ejphar.2008.12.049
  30. Ma F, Li Y, Jia L, Han Y, Cheng J, Li H, et al. Macrophage-stimulated cardiac fibroblast production of IL-6 is essential for TGF beta/Smad activation and cardiac fibrosis induced by angiotensin II. PLoS One. 2012;7:e35144. https://doi.org/10.1371/journal.pone.0035144
  31. De Mello WC, Specht P. Chronic blockade of angiotensin II AT1-receptors increased cell-to-cell communication, reduced fibrosis and improved impulse propagation in the failing heart. J Renin Angiotensin Aldosterone Syst. 2006;7:201-5. https://doi.org/10.3317/jraas.2006.038
  32. Shibasaki Y, Nishiue T, Masaki H, Tamura K, Matsumoto N, Mori Y, et al. Impact of the angiotensin II receptor antagonist, losartan, on myocardial fibrosis in patients with end-stage renal disease: assessment by ultrasonic integrated backscatter and biochemical markers. Hypertens Res. 2005; 28:787-95. https://doi.org/10.1291/hypres.28.787
  33. Ortiz LA, Lasky J, Gozal E, Ruiz V, Lungarella G, Cavarra E, et al. Tumor necrosis factor receptor deficiency alters matrix metalloproteinase 13/tissue inhibitor of metalloproteinase 1 expression in murine silicosis. Am J Respir Crit Care Med. 2001;163:244-52. https://doi.org/10.1164/ajrccm.163.1.2002123
  34. Westermann D, Rutschow S, Van Linthout S, Linderer A, Bucker-Gartner C, Sobirey M, et al. Inhibition of p38 mitogen-activated protein kinase attenuates left ventricular dysfunction by mediating pro-inflammatory cardiac cytokine levels in a mouse model of diabetes mellitus. Diabetologia. 2006;49:2507-13. https://doi.org/10.1007/s00125-006-0385-2
  35. Wilson SS, Ayaz SI, Levy PD. Relaxin: a novel agent for the treatment of acute heart failure. Pharmacotherapy. 2015;35:315-27. https://doi.org/10.1002/phar.1548
  36. Turner NA, Porter KE, Smith WH, White HL, Ball SG, Balmforth AJ. Chronic beta2-adrenergic receptor stimulation increases proliferation of human cardiac fibroblasts via an autocrine mechanism. Cardiovasc Res. 2003;57:784-92. https://doi.org/10.1016/S0008-6363(02)00729-0
  37. Porter KE, Turner NA, O'Regan DJ, Balmforth AJ, Ball SG. Simvastatin reduces human atrial myofibroblast proliferation independently of cholesterol lowering via inhibition of RhoA. Cardiovasc Res. 2004;61:745-55. https://doi.org/10.1016/j.cardiores.2003.11.032
  38. Blackburn NJ, Sofrenovic T, Kuraitis D, Ahmadi A, McNeill B, Deng C, et al. Timing underpins the benefits associated with injectable collagen biomaterial therapy for the treatment of myocardial infarction. Biomaterials. 2015;39:182-92. https://doi.org/10.1016/j.biomaterials.2014.11.004
  39. Deng B, Shen L, Wu Y, Shen Y, Ding X, Lu S, et al. Delivery of alginate-chitosan hydrogel promotes endogenous repair and preserves cardiac function in rats with myocardial infarction. J Biomed Mater Res A. 2015;103:907-18. https://doi.org/10.1002/jbm.a.35232
  40. Bridges AW, Garcia AJ. Anti-inflammatory polymeric coatings for implantable biomaterials and devices. J Diabetes Sci Technol. 2008;2:984-94. https://doi.org/10.1177/193229680800200628
  41. Wang F, Guan J. Cellular cardiomyoplasty and cardiac tissue engineering for myocardial therapy. Adv Drug Deliv Rev. 2010;62:784-97. https://doi.org/10.1016/j.addr.2010.03.001
  42. Wang RM, Christman KL. Decellularized myocardial matrix hydrogels: In basic research and preclinical studies. Adv Drug Deliv Rev. 2016;96:77-82. https://doi.org/10.1016/j.addr.2015.06.002
  43. Turner NA. Inflammatory and fibrotic responses of cardiac fibroblasts to myocardial damage associated molecular patterns (DAMPs). J Mol Cell Cardiol. 2015;94:189.
  44. Nakamura T, Matsumoto K, Mizuno S, Sawa Y, Matsuda H, Nakamura T. Hepatocyte growth factor prevents tissue fibrosis, remodeling, and dysfunction in cardiomyopathic hamster hearts. Am J Physiol Heart Circ Physiol. 2005;288:H2131-9. https://doi.org/10.1152/ajpheart.01239.2003
  45. McDade JK, Brennan-Pierce EP, Ariganello MB, Labow RS, Michael LJ. Interactions of U937 macrophage-like cells with decellularized pericardial matrix materials: influence of crosslinking treatment. Acta Biomater. 2013; 9:7191-9. https://doi.org/10.1016/j.actbio.2013.02.021
  46. Sonnenberg SB, Rane AA, Liu CJ, Rao N, Agmon G, Suarez S, et al. Delivery of an engineered HGF fragment in an extracellular matrix-derived hydrogel prevents negative LV remodeling post-myocardial infarction. Biomaterials. 2015;45:56-63. https://doi.org/10.1016/j.biomaterials.2014.12.021
  47. Yoshizumi T, Zhu Y, Jiang H, D'Amore A, Sakaguchi H, Tchao J, et al. Timing effect of intramyocardial hydrogel injection for positively impacting left ventricular remodeling after myocardial infarction. Biomaterials. 2016;83: 182-93. https://doi.org/10.1016/j.biomaterials.2015.12.002
  48. Sutton MG, Sharpe N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation. 2000;101:2981-8. https://doi.org/10.1161/01.CIR.101.25.2981
  49. Lahera V, Cachofeiro V, de Las Heras N. Interplay of hypertension, inflammation, and angiotensin II. Am J Hypertens. 2011;24:1059. https://doi.org/10.1038/ajh.2011.142
  50. Haudek SB, Cheng J, Du J, Wang Y, Hermosillo-Rodriguez J, Trial J, et al. Monocytic fibroblast precursors mediate fibrosis in angiotensin-II-induced cardiac hypertrophy. J Mol Cell Cardiol. 2010;49:499-507. https://doi.org/10.1016/j.yjmcc.2010.05.005
  51. Bodiga S, Zhong JC, Wang W, Basu R, Lo J, Liu GC, et al. Enhanced susceptibility to biomechanical stress in ACE2 null mice is prevented by loss of the p47(phox) NADPH oxidase subunit. Cardiovasc Res. 2011;91:151-61. https://doi.org/10.1093/cvr/cvr036
  52. Holmes JW, Borg TK, Covell JW. Structure and mechanics of healing myocardial infarcts. Annu Rev Biomed Eng. 2005;7:223-53. https://doi.org/10.1146/annurev.bioeng.7.060804.100453
  53. Vu TD, Pal SN, Ti LK, Martinez EC, Rufaihah AJ, Ling LH, et al. An autologous platelet-rich plasma hydrogel compound restores left ventricular structure, function and ameliorates adverse remodeling in a minimally invasive large animal myocardial restoration model: a translational approach: Vu and Pal "Myocardial Repair: PRP, Hydrogel and Supplements". Biomaterials. 2015; 45:27-35. https://doi.org/10.1016/j.biomaterials.2014.12.013
  54. Kobayashi H, Minatoguchi S, Yasuda S, Bao N, Kawamura I, Iwasa M, et al. Post-infarct treatment with an erythropoietin-gelatin hydrogel drug delivery system for cardiac repair. Cardiovasc Res. 2008;79:611-20. https://doi.org/10.1093/cvr/cvn154
  55. Taniyama Y, Morishita R, Aoki M, Hiraoka K, Yamasaki K, Hashiya N, et al. Angiogenesis and antifibrotic action by hepatocyte growth factor in cardiomyopathy. Hypertension. 2002;40:47-53. https://doi.org/10.1161/01.HYP.0000020755.56955.BF
  56. Futamatsu H, Suzuki J, Mizuno S, Koga N, Adachi S, Kosuge H, et al. Hepatocyte growth factor ameliorates the progression of experimental autoimmune myocarditis: a potential role for induction of T helper 2 cytokines. Circ Res. 2005;96:823-30. https://doi.org/10.1161/01.RES.0000163016.52653.2e
  57. Nakamura T, Sakai K, Nakamura T, Matsumoto K. Hepatocyte growth factor twenty years on: Much more than a growth factor. J Gastroenterol Hepatol. 2011;26 Suppl 1:188-202. https://doi.org/10.1111/j.1440-1746.2010.06549.x
  58. Ueda H, Nakamura T, Matsumoto K, Sawa Y, Matsuda H, Nakamura T. A potential cardioprotective role of hepatocyte growth factor in myocardial infarction in rats. Cardiovasc Res. 2001;51:41-50. https://doi.org/10.1016/S0008-6363(01)00272-3
  59. Nakamura T, Mizuno S, Matsumoto K, Sawa Y, Matsuda H, Nakamura T. Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. J Clin Invest. 2000;106:1511-9. https://doi.org/10.1172/JCI10226
  60. Li Y, Takemura G, Kosai K, Yuge K, Nagano S, Esaki M, et al. Postinfarction treatment with an adenoviral vector expressing hepatocyte growth factor relieves chronic left ventricular remodeling and dysfunction in mice. Circulation. 2003;107:2499-506. https://doi.org/10.1161/01.CIR.0000065579.19126.B8
  61. Nakano J, Marui A, Muranaka H, Masumoto H, Noma H, Tabata Y, et al. Effects of hepatocyte growth factor in myocarditis rats induced by immunization with porcine cardiac myosin. Interact Cardiovasc Thorac Surg. 2014;18:300-7. https://doi.org/10.1093/icvts/ivt512
  62. Ross J, Gherardi E, Mallorqui-Fernandez N, Bocci M, Sobkowicz A, Rees M, et al. Protein engineered variants of hepatocyte growth factor/scatter factor promote proliferation of primary human hepatocytes and in rodent liver. Gastroenterology. 2012;142:897-906. https://doi.org/10.1053/j.gastro.2011.12.006
  63. Jones 2nd DS, Tsai PC, Cochran JR. Engineering hepatocyte growth factor fragments with high stability and activity as Met receptor agonists and antagonists. Proc Natl Acad Sci U S A. 2011;108:13035-40. https://doi.org/10.1073/pnas.1102561108
  64. Liu CJ, Jones 2nd DS, Tsai PC, Venkataramana A, Cochran JR. An engineered dimeric fragment of hepatocyte growth factor is a potent c-MET agonist. FEBS Lett. 2014;588:4831-7. https://doi.org/10.1016/j.febslet.2014.11.018
  65. Ruvinov E, Harel-Adar T, Cohen S. Bioengineering the infarcted heart by applying bio-inspired materials. J Cardiovasc Transl Res. 2011;4:559-74. https://doi.org/10.1007/s12265-011-9288-9
  66. Ruvinov E, Leor J, Cohen S. The promotion of myocardial repair by the sequential delivery of IGF-1 and HGF from an injectable alginate biomaterial in a model of acute myocardial infarction. Biomaterials. 2011;32:565-78. https://doi.org/10.1016/j.biomaterials.2010.08.097
  67. Salimath AS, Phelps EA, Boopathy AV, Che PL, Brown M, Garcia AJ, et al. Dual delivery of hepatocyte and vascular endothelial growth factors via a protease-degradable hydrogel improves cardiac function in rats. PLoS One. 2012;7:e50980. https://doi.org/10.1371/journal.pone.0050980
  68. Samuel SM, Akita Y, Paul D, Thirunavukkarasu M, Zhan L, Sudhakaran PR, et al. Coadministration of adenoviral vascular endothelial growth factor and angiopoietin-1 enhances vascularization and reduces ventricular remodeling in the infarcted myocardium of type 1 diabetic rats. Diabetes. 2010;59:51-60. https://doi.org/10.2337/db09-0336
  69. Zentilin L, Puligadda U, Lionetti V, Zacchigna S, Collesi C, Pattarini L, et al. Cardiomyocyte VEGFR-1 activation by VEGF-B induces compensatory hypertrophy and preserves cardiac function after myocardial infarction. FASEB J. 2010;24:1467-78. https://doi.org/10.1096/fj.09-143180
  70. Ishiguro S, Akasaka Y, Kiguchi H, Suzuki T, Imaizumi R, Ishikawa Y, et al. Basic fibroblast growth factor induces down-regulation of alpha-smooth muscle actin and reduction of myofibroblast areas in open skin wounds. Wound Repair Regen. 2009;17:617-25. https://doi.org/10.1111/j.1524-475X.2009.00511.x
  71. Shirakihara T, Horiguchi K, Miyazawa K, Ehata S, Shibata T, Morita I, et al. TGF-beta regulates isoform switching of FGF receptors and epithelialmesenchymal transition. EMBO J. 2011;30:783-95. https://doi.org/10.1038/emboj.2010.351
  72. Cushing MC, Mariner PD, Liao JT, Sims EA, Anseth KS. Fibroblast growth factor represses Smad-mediated myofibroblast activation in aortic valvular interstitial cells. Faseb J. 2008;22:1769-77. https://doi.org/10.1096/fj.07-087627
  73. Svystonyuk DA, Ngu JM, Mewhort HE, Lipon BD, Teng G, Guzzardi DG, et al. Fibroblast growth factor-2 regulates human cardiac myofibroblast-mediated extracellular matrix remodeling. J Transl Med. 2015;13:147. https://doi.org/10.1186/s12967-015-0510-4
  74. Santiago JJ, McNaughton LJ, Koleini N, Ma X, Bestvater B, Nickel BE, et al. High molecular weight fibroblast growth factor-2 in the human heart is a potential target for prevention of cardiac remodeling. PLoS One. 2014; 9:e97281. https://doi.org/10.1371/journal.pone.0097281
  75. Souders CA, Bowers SL, Baudino TA. Cardiac fibroblast: the renaissance cell. Circ Res. 2009;105:1164-76. https://doi.org/10.1161/CIRCRESAHA.109.209809
  76. Banquet S, Gomez E, Nicol L, Edwards-Levy F, Henry JP, Cao R, et al. Arteriogenic therapy by intramyocardial sustained delivery of a novel growth factor combination prevents chronic heart failure. Circulation. 2011; 124:1059-69. https://doi.org/10.1161/CIRCULATIONAHA.110.010264
  77. Fan YH, Dong H, Pan Q, Cao YJ, Li H, Wang HC. Notch signaling may negatively regulate neonatal rat cardiac fibroblast-myofibroblast transformation. Physiol Res. 2011;60:739-48.
  78. Boopathy AV, Martinez MD, Smith AW, Brown ME, Garcia AJ, Davis ME. Intramyocardial delivery of Notch ligand-containing hydrogels improves cardiac function and angiogenesis following infarction. Tissue Eng Part A. 2015;21:2315-22. https://doi.org/10.1089/ten.tea.2014.0622
  79. Forrester JS, Makkar RR, Marban E. Long-term outcome of stem cell therapy for acute myocardial infarction: right results, wrong reasons. J Am Coll Cardiol. 2009;53:2270-2. https://doi.org/10.1016/j.jacc.2009.03.023
  80. Don CW, Murry CE. Improving survival and efficacy of pluripotent stem cellderived cardiac grafts. J Cell Mol Med. 2013;17:1355-62. https://doi.org/10.1111/jcmm.12147
  81. Tang YL, Wang YJ, Chen LJ, Pan YH, Zhang L, Weintraub NL. Cardiac-derived stem cell-based therapy for heart failure: progress and clinical applications. Exp Biol Med (Maywood). 2013;238:294-300. https://doi.org/10.1177/1535370213477982
  82. Garbern JC, Lee RT. Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell. 2013;12:689-98. https://doi.org/10.1016/j.stem.2013.05.008
  83. Rosen MR, Myerburg RJ, Francis DP, Cole GD, Marban E. Translating stem cell research to cardiac disease therapies: pitfalls and prospects for improvement. J Am Coll Cardiol. 2014;64:922-37. https://doi.org/10.1016/j.jacc.2014.06.1175
  84. van Berlo JH, Molkentin JD. An emerging consensus on cardiac regeneration. Nat Med. 2014;20:1386-93. https://doi.org/10.1038/nm.3764
  85. Nagaya N, Kangawa K, Itoh T, Iwase T, Murakami S, Miyahara Y, et al. Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation. 2005;112:1128-35. https://doi.org/10.1161/CIRCULATIONAHA.104.500447
  86. Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F, et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cellmediated cardiac protection and functional improvement. FASEB J. 2006; 20:661-9. https://doi.org/10.1096/fj.05-5211com
  87. Ripa RS, Haack-Sorensen M, Wang Y, Jorgensen E, Mortensen S, Bindslev L, et al. Bone marrow derived mesenchymal cell mobilization by granulocytecolony stimulating factor after acute myocardial infarction: results from the Stem Cells in Myocardial Infarction (STEMMI) trial. Circulation. 2007;116:I24-30.
  88. Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK, Schulman SP, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009;54:2277-86. https://doi.org/10.1016/j.jacc.2009.06.055
  89. Traverse JH, McKenna DH, Harvey K, Jorgenso BC, Olson RE, Bostrom N, et al. Results of a phase 1, randomized, double-blind, placebo-controlled trial of bone marrow mononuclear stem cell administration in patients following ST-elevation myocardial infarction. Am Heart J. 2010;160:428-34. https://doi.org/10.1016/j.ahj.2010.06.009
  90. Duran JM, Makarewich CA, Sharp TE, Starosta T, Zhu F, Hoffman NE, et al. Bone-derived stem cells repair the heart after myocardial infarction through transdifferentiation and paracrine signaling mechanisms. Circ Res. 2013; 113:539-52. https://doi.org/10.1161/CIRCRESAHA.113.301202
  91. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002;105:93-8. https://doi.org/10.1161/hc0102.101442
  92. Balana B, Nicoletti C, Zahanich I, Graf EM, Christ T, Boxberger S, et al. 5-Azacytidine induces changes in electrophysiological properties of human mesenchymal stem cells. Cell Res. 2006;16:949-60. https://doi.org/10.1038/sj.cr.7310116
  93. Qian Q, Qian H, Zhang X, Zhu W, Yan YM, Ye SQ, et al. 5-azacytidine induces cardiac differentiation of human umbilical cord-derived mesenchymal stem cells by activating extracellular regulated kinase. Stem Cells Dev. 2012;21:67-75. https://doi.org/10.1089/scd.2010.0519
  94. Wang CC, Chen CH, Lin WW, Hwang SM, Hsieh PCH, Lai PH, et al. Direct intramyocardial injection of mesenchymal stem cell sheet fragments improves cardiac functions after infarction. Cardiovasc Res. 2008;77:515-24. https://doi.org/10.1093/cvr/cvm046
  95. Martinez EC, Kofidis T. Adult stem cells for cardiac tissue engineering. J Mol Cell Cardiol. 2011;50:312-9. https://doi.org/10.1016/j.yjmcc.2010.08.009
  96. Perin EC, Tian M, Marini FC, Silva GV, Zheng Y, Baimbridge F, et al. Imaging long-term fate of intramyocardially implanted mesenchymal stem cells in a porcine myocardial infarction model. Plos One. 2011;6:e22949. https://doi.org/10.1371/journal.pone.0022949
  97. Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res. 2004;95:9-20. https://doi.org/10.1161/01.RES.0000135902.99383.6f
  98. Mias C, Lairez O, Trouche E, Roncalli J, Calise D, Seguelas MH, et al. Mesenchymal stem cells promote matrix metalloproteinase secretion by cardiac fibroblasts and reduce cardiac ventricular fibrosis after myocardial infarction. Stem Cells. 2009;27:2734-43. https://doi.org/10.1002/stem.169
  99. Zuo S, Jones WK, Li HX, He ZS, Pasha ZS, Yang YT, et al. Paracrine effect of Wnt11-overexpressing mesenchymal stem cells on ischemic injury. Stem Cells Dev. 2012;21:598-608. https://doi.org/10.1089/scd.2011.0071
  100. Mazo M, Planat-Benard V, Abizanda G, Pelacho B, Leobon B, Gavira JJ, et al. Transplantation of adipose derived stromal cells is associated with functional improvement in a rat model of chronic myocardial infarction. Eur J Heart Fail. 2008;10:454-62. https://doi.org/10.1016/j.ejheart.2008.03.017
  101. Mazo M, Hernandez S, Gavira JJ, Abizanda G, Arana M, Lopez-Martinez T, et al. Treatment of reperfused ischemia with adipose-derived stem cells in a preclinical Swine model of myocardial infarction. Cell Transplant. 2012; 21:2723-33. https://doi.org/10.3727/096368912X638847
  102. Shevchenko EK, Makarevich PI, Tsokolaeva ZI, Boldyreva MA, Sysoeva VY, Tkachuk VA, et al. Transplantation of modified human adipose derived stromal cells expressing VEGF165 results in more efficient angiogenic response in ischemic skeletal muscle. J Transl Med. 2013;11:138. https://doi.org/10.1186/1479-5876-11-138
  103. Rigol M, Solanes N, Roura S, Roque M, Novensa L, Dantas AP, et al. Allogeneic adipose stem cell therapy in acute myocardial infarction. Eur J Clin Invest. 2014;44:83-92.
  104. Hosoda T, Zheng H, Cabral-da-Silva M, Sanada F, Ide-Iwata N, Ogorek B, et al. Human cardiac stem cell differentiation is regulated by a mircrine mechanism. Circulation. 2011;123:1287-96. https://doi.org/10.1161/CIRCULATIONAHA.110.982918
  105. Chugh AR, Beache GM, Loughran JH, Mewton N, Elmore JB, Kajstura J, et al. Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance. Circulation. 2012; 126:S54-64. https://doi.org/10.1161/CIRCULATIONAHA.112.092627
  106. Bolli R, Tang XL, Sanganalmath SK, Rimoldi O, Mosna F, Abdel-Latif A, et al. Intracoronary delivery of autologous cardiac stem cells improves cardiac function in a porcine model of chronic ischemic cardiomyopathy. Circulation. 2013;128:122-31. https://doi.org/10.1161/CIRCULATIONAHA.112.001075
  107. Latham N, Ye B, Jackson R, Lam BK, Kuraitis D, Ruel M, et al. Human blood and cardiac stem cells synergize to enhance cardiac repair when cotransplanted into ischemic myocardium. Circulation. 2013;128:S105-12. https://doi.org/10.1161/CIRCULATIONAHA.112.000374
  108. Williams AR, Hatzistergos KE, Addicott B, McCall F, Carvalho D, Suncion V, et al. Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation. 2013;127:213-23. https://doi.org/10.1161/CIRCULATIONAHA.112.131110
  109. Spater D, Abramczuk MK, Buac K, Zangi L, Stachel MW, Clarke J, et al. A HCN4+ cardiomyogenic progenitor derived from the first heart field and human pluripotent stem cells. Nat Cell Biol. 2013;15:1098-106. https://doi.org/10.1038/ncb2824
  110. Nsair A, Schenke-Layland K, Van Handel B, Evseenko D, Kahn M, Zhao P, et al. Characterization and therapeutic potential of induced pluripotent stem cell-derived cardiovascular progenitor cells. PLoS One. 2012;7:e45603. https://doi.org/10.1371/journal.pone.0045603
  111. Hudson J, Titmarsh D, Hidalgo A, Wolvetang E, Cooper-White J. Primitive cardiac cells from human embryonic stem cells. Stem Cells Dev. 2012; 21:1513-23. https://doi.org/10.1089/scd.2011.0254
  112. Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation. 2007; 115:896-908. https://doi.org/10.1161/CIRCULATIONAHA.106.655209
  113. Davis DR, Zhang Y, Smith RR, Cheng K, Terrovitis J, Malliaras K, et al. Validation of the cardiosphere method to culture cardiac progenitor cells from myocardial tissue. PLoS One. 2009;4:e7195. https://doi.org/10.1371/journal.pone.0007195
  114. Johnston PV, Sasano T, Mills K, Evers R, Lee ST, Smith RR, et al. Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation. 2009;120:1075-83. https://doi.org/10.1161/CIRCULATIONAHA.108.816058
  115. Chimenti I, Smith RR, Li TS, Gerstenblith G, Messina E, Giacomello A, et al. Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ Res. 2010; 106:971-80. https://doi.org/10.1161/CIRCRESAHA.109.210682
  116. Mishra R, Vijayan K, Colletti EJ, Harrington DA, Matthiesen TS, Simpson D, et al. Characterization and functionality of cardiac progenitor cells in congenital heart patients. Circulation. 2011;123:364-73. https://doi.org/10.1161/CIRCULATIONAHA.110.971622
  117. Li TS, Cheng K, Malliaras K, Smith RR, Zhang Y, Sun B, et al. Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cells. J Am Coll Cardiol. 2012;59:942-53. https://doi.org/10.1016/j.jacc.2011.11.029
  118. Maxeiner H, Mufti S, Krehbiehl N, Dulfer F, Helmig S, Schneider J, et al. Interleukin-6 contributes to the paracrine effects of cardiospheres cultured from human, murine and rat hearts. J Cell Physiol. 2014;229:1681-9. https://doi.org/10.1002/jcp.24613
  119. Xie Y, Ibrahim A, Cheng K, Wu Z, Liang W, Malliaras K, et al. Importance of cell-cell contact in the therapeutic benefits of cardiosphere-derived cells. Stem Cells. 2014;32:2397-406. https://doi.org/10.1002/stem.1736
  120. Davis DR, Kizana E, Terrovitis J, Barth AS, Zhang YQ, Smith RR, et al. Isolation and expansion of functionally-competent cardiac progenitor cells directly from heart biopsies. J Mol Cell Cardiol. 2010;49:312-21. https://doi.org/10.1016/j.yjmcc.2010.02.019
  121. Davis DR, Zhang YQ, Smith RR, Cheng K, Terrovitis J, Malliaras K, et al. Validation of the cardiosphere method to culture cardiac progenitor cells from myocardial tissue. Plos One. 2009;4.
  122. Lee ST, White AJ, Matsushita S, Malliaras K, Steenbergen C, Zhang Y, et al. Intramyocardial injection of autologous cardiospheres or cardiospherederived cells preserves function and minimizes adverse ventricular remodeling in pigs with heart failure post-myocardial infarction. J Am Coll Cardiol. 2011;57:455-65. https://doi.org/10.1016/j.jacc.2010.07.049
  123. Sun CK, Zhen YY, Leu S, Tsai TH, Chang LT, Sheu JJ, et al. Direct implantation versus platelet-rich fibrin-embedded adipose-derived mesenchymal stem cells in treating rat acute myocardial infarction. Int J Cardiol. 2014;14:00440-9.
  124. Arana M, Gavira JJ, Pena E, Gonzalez A, Abizanda G, Cilla M, et al. Epicardial delivery of collagen patches with adipose-derived stem cells in rat and minipig models of chronic myocardial infarction. Biomaterials. 2014;35:143-51. https://doi.org/10.1016/j.biomaterials.2013.09.083
  125. Ohnishi S, Sumiyoshi H, Kitamura S, Nagaya N. Mesenchymal stem cells attenuate cardiac fibroblast proliferation and collagen synthesis through paracrine actions. FEBS Lett. 2007;581:3961-6. https://doi.org/10.1016/j.febslet.2007.07.028
  126. Xia Y, Zhu K, Lai H, Lang M, Xiao Y, Lian S, et al. Enhanced infarct myocardium repair mediated by thermosensitive copolymer hydrogel-based stem cell transplantation. Exp Biol Med (Maywood). 2015;240:593-600. https://doi.org/10.1177/1535370214560957
  127. Ceccaldi C, Bushkalova R, Alfarano C, Lairez O, Calise D, Bourin P, et al. Evaluation of polyelectrolyte complex-based scaffolds for mesenchymal stem cell therapy in cardiac ischemia treatment. Acta Biomater. 2014; 10:901-11. https://doi.org/10.1016/j.actbio.2013.10.027
  128. Fiumana E, Pasquinelli G, Foroni L, Carboni M, Bonafe F, Orrico C, et al. Localization of mesenchymal stem cells grafted with a hyaluronan-based scaffold in the infarcted heart. J Surg Res. 2013;179:e21-9. https://doi.org/10.1016/j.jss.2012.01.028
  129. Engler AJ, Carag-Krieger C, Johnson CP, Raab M, Tang HY, Speicher DW, et al. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci. 2008;121:3794-802. https://doi.org/10.1242/jcs.029678
  130. Nelson DM, Baraniak PR, Ma Z, Guan J, Mason NS, Wagner WR. Controlled release of IGF-1 and HGF from a biodegradable polyurethane scaffold. Pharm Res. 2011;28:1282-93. https://doi.org/10.1007/s11095-011-0391-z
  131. Tamama K, Kawasaki H, Kerpedjieva SS, Guan J, Ganju RK, Sen CK. Differential roles of hypoxia inducible factor subunits in multipotential stromal cells under hypoxic condition. J Cell Biochem. 2011;112:804-17. https://doi.org/10.1002/jcb.22961
  132. Guo X, Elliott CG, Li Z, Xu Y, Hamilton DW, Guan J. Creating 3D angiogenic growth factor gradients in fibrous constructs to guide fast angiogenesis. Biomacromolecules. 2012;13:3262-71. https://doi.org/10.1021/bm301029a
  133. Li Z, Guo X, Guan J. A thermosensitive hydrogel capable of releasing bFGF for enhanced differentiation of mesenchymal stem cell into cardiomyocytelike cells under ischemic conditions. Biomacromolecules. 2012;13:1956-64. https://doi.org/10.1021/bm300574j
  134. Wang F, Li Z, Khan M, Tamama K, Kuppusamy P, Wagner WR, et al. Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers. Acta Biomater. 2010;6:1978-91. https://doi.org/10.1016/j.actbio.2009.12.011
  135. Wang F, Li Z, Tamama K, Sen CK, Guan J. Fabrication and characterization of prosurvival growth factor releasing, anisotropic scaffolds for enhanced mesenchymal stem cell survival/growth and orientation. Biomacromolecules. 2009;10:2609-18. https://doi.org/10.1021/bm900541u
  136. Li Z, Guo X, Guan J. An oxygen release system to augment cardiac progenitor cell survival and differentiation under hypoxic condition. Biomaterials. 2012;33:5914-23. https://doi.org/10.1016/j.biomaterials.2012.05.012

Cited by

  1. Crucial Role of miR-433 in Regulating Cardiac Fibrosis vol.6, pp.12, 2016, https://doi.org/10.7150/thno.15007
  2. New Treatment Strategies for Alcohol-Induced Heart Damage vol.17, pp.10, 2016, https://doi.org/10.3390/ijms17101651
  3. Imatinib attenuates cardiac fibrosis by inhibiting platelet-derived growth factor receptors activation in isoproterenol induced model vol.12, pp.6, 2016, https://doi.org/10.1371/journal.pone.0178619
  4. A primer on current progress in cardiac fibrosis vol.95, pp.10, 2017, https://doi.org/10.1139/cjpp-2016-0687
  5. Biventricular Increases in Mitochondrial Fission Mediator (MiD51) and Proglycolytic Pyruvate Kinase (PKM2) Isoform in Experimental Group 2 Pulmonary Hypertension-Novel Mitochondrial Abnormalities vol.5, pp.None, 2016, https://doi.org/10.3389/fcvm.2018.00195
  6. Geniposide Alleviates Isoproterenol-Induced Cardiac Fibrosis Partially via SIRT1 Activation in vivo and in vitro vol.9, pp.None, 2016, https://doi.org/10.3389/fphar.2018.00854
  7. Inhibitory effect of GMI, an immunomodulatory protein from Ganoderma microsporum, on myofibroblast activity and proinflammatory cytokines in human fibrotic buccal mucosal fibroblasts vol.33, pp.1, 2018, https://doi.org/10.1002/tox.22489
  8. Givinostat reduces adverse cardiac remodeling through regulating fibroblasts activation vol.9, pp.2, 2016, https://doi.org/10.1038/s41419-017-0174-5
  9. Nogo-C regulates post myocardial infarction fibrosis through the interaction with ER Ca 2+ leakage channel Sec61α in mouse hearts vol.9, pp.6, 2016, https://doi.org/10.1038/s41419-018-0598-6
  10. An Injectable Oxygen Release System to Augment Cell Survival and Promote Cardiac Repair Following Myocardial Infarction vol.8, pp.None, 2018, https://doi.org/10.1038/s41598-018-19906-w
  11. MiR-150-5p retards the progression of myocardial fibrosis by targeting EGR1 vol.18, pp.12, 2016, https://doi.org/10.1080/15384101.2019.1617614
  12. Cyclin Dependent Kinase 1 (CDK1) Activates Cardiac Fibroblasts via Directly Phosphorylating Paxillin at Ser244 vol.60, pp.2, 2016, https://doi.org/10.1536/ihj.18-073
  13. Progress and Applications of Polyphosphate in Bone and Cartilage Regeneration vol.2019, pp.None, 2016, https://doi.org/10.1155/2019/5141204
  14. Human Umbilical Cord Mesenchymal Stem Cells Alleviate Myocardial Endothelial-Mesenchymal Transition in a Rat Dilated Cardiomyopathy Model vol.51, pp.3, 2016, https://doi.org/10.1016/j.transproceed.2019.01.080
  15. Cross-Talk between Neurohormonal Pathways and the Immune System in Heart Failure: A Review of the Literature vol.20, pp.7, 2019, https://doi.org/10.3390/ijms20071698
  16. miR‐193a/b‐3p relieves hepatic fibrosis and restrains proliferation and activation of hepatic stellate cells vol.23, pp.6, 2016, https://doi.org/10.1111/jcmm.14210
  17. Simvastatin Attenuates Cardiac Fibrosis via Regulation of Cardiomyocyte-Derived Exosome Secretion vol.8, pp.6, 2019, https://doi.org/10.3390/jcm8060794
  18. Concise Review: Reduction of Adverse Cardiac Scarring Facilitates Pluripotent Stem Cell-Based Therapy for Myocardial Infarction vol.37, pp.7, 2016, https://doi.org/10.1002/stem.3009
  19. Biowire Model of Interstitial and Focal Cardiac Fibrosis vol.5, pp.7, 2016, https://doi.org/10.1021/acscentsci.9b00052
  20. Co-treatment with interferon-γ and 1-methyl tryptophan ameliorates cardiac fibrosis through cardiac myofibroblasts apoptosis vol.458, pp.1, 2016, https://doi.org/10.1007/s11010-019-03542-7
  21. Targeting Cardiac Fibrosis with Engineered T cells vol.573, pp.7774, 2019, https://doi.org/10.1038/s41586-019-1546-z
  22. WWP2 regulates pathological cardiac fibrosis by modulating SMAD2 signaling vol.10, pp.1, 2016, https://doi.org/10.1038/s41467-019-11551-9
  23. Mussel-inspired conductive Ti 2 C-cryogel promotes functional maturation of cardiomyocytes and enhances repair of myocardial infarction vol.10, pp.5, 2016, https://doi.org/10.7150/thno.38876
  24. miR-19a/19b-loaded exosomes in combination with mesenchymal stem cell transplantation in a preclinical model of myocardial infarction vol.15, pp.6, 2016, https://doi.org/10.2217/rme-2019-0136
  25. Genomics of Human Fibrotic Diseases: Disordered Wound Healing Response vol.21, pp.22, 2016, https://doi.org/10.3390/ijms21228590
  26. Biomarkers of myocardial fibrosis and their genetic regulation in patients with heart failure vol.25, pp.10, 2016, https://doi.org/10.15829/1560-4071-2020-3933
  27. Synthetic Prostacyclin Agonist Attenuates Pressure-Overloaded Cardiac Fibrosis by Inhibiting FMT vol.19, pp.None, 2016, https://doi.org/10.1016/j.omtm.2020.09.005
  28. Endothelial to Mesenchymal Transition in the Cardiogenesis and Cardiovascular Diseases vol.16, pp.4, 2020, https://doi.org/10.2174/1573403x15666190808100336
  29. Exosomal miR-218-5p/miR-363-3p from Endothelial Progenitor Cells Ameliorate Myocardial Infarction by Targeting the p53/JMY Signaling Pathway vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/5529430
  30. Engineering multifunctional metal/protein hybrid nanomaterials as tools for therapeutic intervention and high-sensitivity detection vol.12, pp.7, 2021, https://doi.org/10.1039/d0sc05215a
  31. Biologics and their delivery systems: Trends in myocardial infarction vol.173, pp.None, 2016, https://doi.org/10.1016/j.addr.2021.03.014
  32. C188‐9 reduces TGF‐β1‐induced fibroblast activation and alleviates ISO‐induced cardiac fibrosis in mice vol.11, pp.7, 2016, https://doi.org/10.1002/2211-5463.13212
  33. Organ-on-a-Chip Systems for Modeling Pathological Tissue Morphogenesis Associated with Fibrosis and Cancer vol.7, pp.7, 2021, https://doi.org/10.1021/acsbiomaterials.0c01089
  34. Liquiritigenin attenuates isoprenaline‑induced myocardial fibrosis in mice through the TGF‑β1/Smad2 and AKT/ERK signaling pathways vol.24, pp.4, 2016, https://doi.org/10.3892/mmr.2021.12326
  35. Perspective on Stem Cell Therapy in Organ Fibrosis: Animal Models and Human Studies vol.11, pp.10, 2016, https://doi.org/10.3390/life11101068
  36. TRPV4 Mechanotransduction in Fibrosis vol.10, pp.11, 2021, https://doi.org/10.3390/cells10113053
  37. Dickkopf 3: a Novel Target Gene of miR-25-3p in Promoting Fibrosis-Related Gene Expression in Myocardial Fibrosis vol.14, pp.6, 2021, https://doi.org/10.1007/s12265-021-10116-w
  38. Cardiac microvascular functions improved by MSC-derived exosomes attenuate cardiac fibrosis after ischemia-reperfusion via PDGFR-β modulation vol.344, pp.None, 2016, https://doi.org/10.1016/j.ijcard.2021.09.017
  39. The role of osteoprotegerin (OPG) in fibrosis: its potential as a biomarker and/or biological target for the treatment of fibrotic diseases vol.228, pp.None, 2021, https://doi.org/10.1016/j.pharmthera.2021.107941
  40. The Potential of Gamma Secretase as a Therapeutic Target for Cardiac Diseases vol.11, pp.12, 2016, https://doi.org/10.3390/jpm11121294