Acknowledgement
Supported by : National Research Foundation of Korea (NRF), Natural Science Foundation of China (NSFC)
References
- Lv S, Dudek DM, Cao Y, et al. Designed biomaterials to mimic the mechanical properties of muscles. Nature. 2010;465:69-73. https://doi.org/10.1038/nature09024
- He J, Wang XM, Spector M, Cui FZ. Scaffolds for central nervous system tissue engineering. Front Mater Sci. 2012;6:1-25. https://doi.org/10.1007/s11706-012-0157-5
- Lutolf MP, Gilbert PM, Blau HM. Designing materials to direct stem-cell fate. Nature. 2009;462:433-41. https://doi.org/10.1038/nature08602
- Onoe H, Okitsu T, Itou A, Kato-Negishi M, Gojo R, Kiriya D, et al. Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nat Mater. 2013;12:584-90. https://doi.org/10.1038/nmat3606
- Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell. 2009;5:17-26. https://doi.org/10.1016/j.stem.2009.06.016
- Park KM, Gerecht S. Hypoxia-inducible hydrogels. Nat Commun. 2014;5:4075. https://doi.org/10.1038/ncomms5075
- Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677-89. https://doi.org/10.1016/j.cell.2006.06.044
- Hurtado A, Cregg JM, Wang HB, Wendell DF, Oudega M, Gilbert RJ, et al. Robust CNS regeneration after complete spinal cord transection using aligned poly-L-lactic acid microfibers. Biomaterials. 2011;32:6068-79. https://doi.org/10.1016/j.biomaterials.2011.05.006
- Han S, Wang B, Jin W, Xiao Z, Li X, Ding W, et al. The linear-ordered collagen scaffold-BDNF complex significantly promotes functional recovery after completely transected spinal cord injury in canine. Biomaterials. 2015;41:89-96. https://doi.org/10.1016/j.biomaterials.2014.11.031
- Jiang X, Cao HQ, Shi LY, Ng SY, Stanton LW, Chew SY. Nanofiber topography and sustained biochemical signaling enhance human mesenchymal stem cell neural commitment. Acta Biomaterialia. 2012;8:1290-302. https://doi.org/10.1016/j.actbio.2011.11.019
- Lim SH, Liu XY, Song H, Yarema KJ, Mao HQ. The effect of nanofiber-guided cell alignment on the preferential differentiation of neural stem cells. Biomaterials. 2010;31:9031-9. https://doi.org/10.1016/j.biomaterials.2010.08.021
- Cho YI, Choi JS, Jeong SY, Yoo HS. Nerve growth factor (NGF)-conjugated electrospun nanostructures with topographical cues for neuronal differentiation of mesenchymal stem cells. Acta Biomaterialia. 2010;6:4725-33. https://doi.org/10.1016/j.actbio.2010.06.019
- Wallace GG, Higgins MJ, Moulton SE, Wang C. Nanobionics: the impact of nanotechnology on implantable medical bionic devices. Nanoscale. 2012;4:4327-47. https://doi.org/10.1039/c2nr30758h
- McCaig CD, Rajnicek AM, Song B, Zhao M. Has electrical growth cone guidance found its potential? Trends Neurosci. 2002;25(7):354-59. https://doi.org/10.1016/S0166-2236(02)02174-4
- Patel S, Kurpinski K, Quigley R, Gao H, Hsiao BS, Poo MM, et al. Bioactive nanofibers: synergistic effects of nanotopography and chemical signaling on cell guidance. Nano Lett. 2007;7:2122-28. https://doi.org/10.1021/nl071182z
- Pelto J, Bjorninen M, Palli A, Talvitie E, Hyttinen J, Mannerstrom B, et al. Novel polypyrrole-coated polylactide scaffolds enhance adipose stem cell proliferation and early osteogenic differentiation. Tissue Eng Pt A. 2013;19(7-8):882-92. https://doi.org/10.1089/ten.tea.2012.0111
- Guimard NK, Gomez N, Schmidt CE. Conducting polymers in biomedical engineering. Prog Polym Sci. 2007;32(8-9):876-921. https://doi.org/10.1016/j.progpolymsci.2007.05.012
- Hardy JG, Lee JY, Schmidt CE. Biomimetic conducting polymer-based tissue scaffolds. Curr Opin Biotech. 2013;24:847-54. https://doi.org/10.1016/j.copbio.2013.03.011
- Cox TR, Erler JT. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech. 2011;4:165-78. https://doi.org/10.1242/dmm.004077
- Green RA, Lovell NH, Wallace GG, Poole-Warren LA. Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. Biomaterials. 2008;29:3393-99.
- Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677-89. https://doi.org/10.1016/j.cell.2006.06.044
- Ding H, Zhong M, Kim YJ, Pholpabu P, Balasubramanian A, Hui CM, et al. Biologically derived soft conducting hydrogels using heparin-doped polymer networks. ACS Nano. 2014;8:4348-57. https://doi.org/10.1021/nn406019m
- Shekaran A, Garcia AJ. Nanoscale engineering of extracellular matrixmimetic bioadhesive surfaces and implants for tissue engineering. Biochim Biophys Acta. 2011;1810(3):350-60. https://doi.org/10.1016/j.bbagen.2010.04.006
- Gomez N, Lee JY, Nickels JD, Schmidt CE. Micropatterned polypyrrole: a combination of electrical and topographical characteristics for the stimulation of cells. Adv Funct Mater. 2007;17:1645-53. https://doi.org/10.1002/adfm.200600669
- Lee JY. Electrically conducting polymer-based nanofibrous scaffolds for tissue engineering applications. Polym Rev. 2013;53:443-59. https://doi.org/10.1080/15583724.2013.806544
- Hardy JG, Geissler SA, Aguilar D, Villancio-Wolter MK, Mouser DJ, Sukhavasi RC, et al. Instructive conductive 3D silk foam-based bone tissue scaffolds enable electrical stimulation of stem cells for enhanced osteogenic differentiation. Macromol Biosci. 2015;11:1490-6.
- Ma Z, Mao Z, Gao C. Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloid Surf B. 2007;60:137-57. https://doi.org/10.1016/j.colsurfb.2007.06.019
- Lee JY, Bashur CA, Milroy CA, Forciniti L, Goldstein AS, Schmidt CE. Nerve growth factor-immobilized electrically conducting fibrous scaffolds for potential use in neural engineering applications. IEEE Trans Nanobiosci. 2012;11(1):15-21. https://doi.org/10.1109/TNB.2011.2159621
- Povlich LK, Cho JC, Leach MK, Corey JM, Kim J, Martin DC. Synthesis, copolymerization and peptide-modification of carboxylic acid-functionalized 3,4-ethylenedioxythiophene (EDOTacid) for neural electrode interfaces. Biochim Biophys Acta. 2013;1830(9):4288-93. https://doi.org/10.1016/j.bbagen.2012.10.017
- Lee JW, Serna F, Nickels J, Schmidt CE. Carboxylic acid-functionalized conductive polypyrrole as a bioactive platform for cell adhesion. Biomacromolecules. 2006;7(6):1692-5. https://doi.org/10.1021/bm060220q
- Kai D, Prabhakaran MP, Jin G, Ramakrishna S. Polypyrrole-contained electrospun conductive nanofibrous membranes for cardiac tissue engineering. J Biomed Mater Res A. 2011;99(3):376-85.
- Shi G, Rouabhia M, Wang Z, Dao LH, Zhang Z. A novel electrically conductive and biodegradable composite made of polypyrrole nanoparticles and polylactide. Biomaterials. 2004;25(13):2477-88. https://doi.org/10.1016/j.biomaterials.2003.09.032
- Zhu B, Luo SC, Zhao H, Lin HA, Sekine J, Nakao A, et al. Large enhancement in neurite outgrowth on a cell membrane-mimicking conducting polymer. Nat Commun. 2014;5:4523. https://doi.org/10.1038/ncomms5523
- Shinde UP, Yeon B, Jeong B. Recent progress of in situ formed gels for biomedical applications. Prog Polym Sci. 2013;38:672-701. https://doi.org/10.1016/j.progpolymsci.2012.08.002
- Seliktar D. Designing cell-compatible hydrogels for biomedical applications. Science. 2012;336:1124-8. https://doi.org/10.1126/science.1214804
- Park KM, Ko KS, Joung YK, Shin H, Park KD. In situ cross-linkable gelatin-poly (ethylene glycol)-tyramine hydrogel via enzyme-mediated reaction for tissue regenerative medicine. J Mater Chem. 2011;21:13180-7. https://doi.org/10.1039/c1jm12527c
- Nguyen MK, Alsberg E. Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine. Prog Polym Sci. 2014;39:1236-65.
- Cushing MC, Anseth KS. Hydrogel cell cultures. Science. 2007;316:1133-4. https://doi.org/10.1126/science.1140171
- Huebsch N, Mooney DJ. Inspiration and application in the evolution of biomaterials. Nature. 2009;462:426-32. https://doi.org/10.1038/nature08601
- Place ES, Evans ND, Stevens MM. Complexity in biomaterials for tissue engineering. Nat Mater. 2009;8:457-70. https://doi.org/10.1038/nmat2441
- Highley CB, Rodell CB, Burdick JA. Direct 3D printing of shear‐thinning hydrogels into self‐healing hydrogels. Adv Mater. 2015;27:5075-9. https://doi.org/10.1002/adma.201501234
- Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotech. 2014;32:773-85. https://doi.org/10.1038/nbt.2958
Cited by
- Conductive and Tough Hydrogels Based on Biopolymer Molecular Templates for Controlling in Situ Formation of Polypyrrole Nanorods vol.10, pp.42, 2018, https://doi.org/10.1021/acsami.8b10280
- Hydrogel‐Based 3D Bioprinting for Bone and Cartilage Tissue Engineering vol.15, pp.12, 2020, https://doi.org/10.1002/biot.202000095
- Advances in gelatin-based hydrogels for wound management vol.9, pp.6, 2016, https://doi.org/10.1039/d0tb02582h