DOI QR코드

DOI QR Code

Light enhanced bone regeneration in an athymic nude mouse implanted with mesenchymal stem cells embedded in PLGA microspheres

  • Park, Ji Sun (Department of Biomedical Science, College of Life Science, CHA University) ;
  • Park, Keun-Hong (Department of Biomedical Science, College of Life Science, CHA University)
  • 투고 : 2015.09.08
  • 심사 : 2016.01.05
  • 발행 : 2016.03.01

초록

Background: Biodegradable microspheres fabricated from poly (Lactic-co-glycolic acid) (PLGA) have attracted considerable attention in the bone tissue regeneration field. In this study, rabbit mesenchymal stem cells (rMSCs) adherent to PLGA microspheres were implanted into athymic nude mice and irradiated with 647 nm red light to promote bone formation. It was found that irradiating rMSCs with high levels of red light (647 nm) from an LED (light-emitting diode) increased levels of bone specific markers in rMSCs embedded on PLGA microspheres. Result: These increased expressions were observed by RT-PCR, real time-QPCR, immunohistochemistry (IHC), and von Kossa and Alizarin red S staining. Microsphere matrices coated with rMSCs were injected into athymic nude mice and irradiated with red light for 60 seconds showed significantly greater bone-specific phenotypes after 4 weeks in vivo. Conclusion: The devised PLGA microsphere matrix containing rMSCs and irradiation with red light at 647 nm process shows promise as a means of coating implantable biomedical devices to improve their biocompatibilities and in vivo performances.

키워드

과제정보

연구 과제 주관 기관 : National Research Foundation of Korea (NRF)

참고문헌

  1. Nakadate M, Amizuka N, Li M, Freitas PH, Oda K, Nomura S, et al. Histological evaluation on bone regeneration of dental implant placement sites grafted with a self-setting alpha-tricalcium phosphate cement. Division of Oral Anatomy. 2008;71:93-104.
  2. Aho AJ, Rekola J, Matinlinna J, Gunn J, Tirri T, Viitaniemi P, et al. Natural composite of wood as replacement material for ostechondral bone defects. J Applied Biomaterials. 2007;83:64-71.
  3. Fricain JC, Schlaubitz S, Le Visage C, Arnault I, Derkaoui SM, Siadous R, et al. A nano-hydroxyapatite-pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering. Biomaterials. 2013;34(12):2947-59. https://doi.org/10.1016/j.biomaterials.2013.01.049
  4. Park JS, Woo DG, Sun BK, Chung HM, Im SJ, Choi YM, et al. In vitro and in vivo test of PEG/PCL-based hydrogel scaffold for cell delivery application. J Controlled Release. 2007;124:51-9. https://doi.org/10.1016/j.jconrel.2007.08.030
  5. Park K, Park JS, Woo DG, Yang HN, Chung HM, Park KH. The use of chondrogenic differentiation drugs to induce stem cell differentiation using double bead microsphere structure. Biomaterials. 2008;29:2490-500. https://doi.org/10.1016/j.biomaterials.2008.02.017
  6. Jeon SY, Park JS, Yang HN, Lim HJ, Yi SW, Park H, et al. Co-delivery of Cbfa-1-targeting siRNA and SOX9 protein using PLGA nanoparticles to induce chondrogenesis of human mesenchymal stem cells. Biomaterials. 2014;35(28):8236-48. https://doi.org/10.1016/j.biomaterials.2014.05.092
  7. Lee IC, Wang JH, Lee YT, Young TH. The differentiation of mesenchymal stem cells by mechanical stress or/and co-culture system. Biochem Biophys Res Commun. 2007;352:147-52. https://doi.org/10.1016/j.bbrc.2006.10.170
  8. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143-7. https://doi.org/10.1126/science.284.5411.143
  9. Grayson WL, Zhao F, Bunnell B, Ma T. Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochem Biophys Res Commun. 2007;358:948-53. https://doi.org/10.1016/j.bbrc.2007.05.054
  10. Matsubara T, Tsutsumi S, Pan H, Hiraoka H, Oda R, Nishimura M, et al. A new technique to expand human mesenchymal stem cells using basement membrane extracellular matrix. Biochem Biophys Res Commun. 2004;313:503-8. https://doi.org/10.1016/j.bbrc.2003.11.143
  11. Al-Watban FAH, Zhang XY. Comparison of wound healing process using argon and krypton lasers. J Clin Laser Med. 1997;15:209-15.
  12. Karu T. Primary and secondary mechanism of action of visible to near-IR radiation on cells. J Photochem Photobiol B. 1999;49:1-17. https://doi.org/10.1016/S1011-1344(98)00219-X
  13. Byrnes KR, Wu X, Waynant RW, Ilev IK, Anders JJ. Low power laser irradiation alters gene expression of olfactory ensheathing cells in vitro. Lasers Surg Med. 2005;37:161-71. https://doi.org/10.1002/lsm.20202
  14. Kujawa J, Zavodnik L, Zavodnik I, Buko V, Lapshyna A, Bryszewska M. Effect of low-intensity (3.75-.25 J/cm2) near-infrared (810 nm) laser radiation on red blood cell ATPase activities and membrane structure. J Clin Laser Med Surg. 2004;22:111-7. https://doi.org/10.1089/104454704774076163
  15. Rezende SB, Ribeiro MS, Nunez SC, Garcia VG, Maldonado EP. Effects of a single near-infrared laser treatment on cutaneous wound healing: Biometrical and histological study in rats. J Photochem Photobiol B. 2007;87:145-53. https://doi.org/10.1016/j.jphotobiol.2007.02.005
  16. Snyder SK, Byrnes KR, Borke RC, Sanchez A, Anders JJ. Quantification of calcitonin gene-related peptide mRNA and neuronal cell death in facial motor nuclei following axotomy and 633 nm low power laser treatment. Lasers Surg Med. 2002;31:216-22. https://doi.org/10.1002/lsm.10098
  17. Karu TI. Molecular mechanism of the therapeutic effect of low intensity laser irradiation. Lasers Life Sci. 1988;2:53-74.
  18. Schaffer M, Sroka R, Fuchs C, Schrader-Reichardt U, Schaffer PM, Busch M, et al. Biomodulative effects induced by 805 nm laser light irradiation of normal and tumor cells. J Photochem Photobiol B. 1997;40:253-7. https://doi.org/10.1016/S1011-1344(97)00065-1
  19. Ocana-Quero JM, Dela Lastra JP, Gomez-Villamandos R, Moreno-Millan M. Biological effect of helium-neon (He-Ne) laser irradiation on mouse myeloma (Sp2-Ag14) cell line in vitro. Lasers Med Sci. 1988;13:214-8.
  20. Pal G, Dutta A, Mitra K, Grace MS, Amat A, Romanczyk TB, et al. Effect of low intensity laser interaction with human skin fibroblast cells using fiber-optic nano-probes. J Photochem Photobiol B. 2007;86:252-61. https://doi.org/10.1016/j.jphotobiol.2006.12.001
  21. Lubart R, Wollman Y, Friedman H, Rochkind S, Laulicht I. Effects of visible and near-infrared lasers on cell culture. J Photochem Photobiol B. 1992;12:305-10. https://doi.org/10.1016/1011-1344(92)85032-P
  22. Hilf R, Murant RS, Narayanan U, Gibson SL. Relationship of mitochondrial function and cellular adenosine triphosphate levels to hematoporphyrin derivative induced photosensitization in R3230AC mammary tumors. Cancer Res. 1986;46:211-7.
  23. Manteifel V, Bakccva L, Karu T. Ultrastructure changes chondriome of human lymphocytes after irradiation of He-. Ne laser: appearance of giant mitochondria. J Photochem Photobiol B. 1997;38:25-30. https://doi.org/10.1016/S1011-1344(96)07426-X
  24. Kim HK, Kim JH, Abbas AA, Kim DO, Park SJ, Chung JY, et al. Red light of 647 nm enhances osteogenic differentiation in mesenchymal stem cells. Lasers Med Sci. 2009;24:214-22. https://doi.org/10.1007/s10103-008-0550-6
  25. Park JS, Woo DG, Yang HN, Chung HM, Park KH. Heparin-bound transforming growth factor- ${\beta}$ 3 enhances neocartilage formation by rabbit mesenchymal stem cells. Transplantation. 2008;85:589-95. https://doi.org/10.1097/TP.0b013e3181639b3a
  26. Park JS, Park K, Woo DG, Yang HN, Chung HM, Park KH. PLGA microsphere construct coated with TGF-${\beta}$ 3 loaded nanoparticles for neocartilage formation. Biomacromolecules. 2008;9:2162-7. https://doi.org/10.1021/bm800251x
  27. Li J, Kwong DL, Chan GC. The effects of various irradiation doses on the growth and differentiation of marrow-derived human mesenchymal stromal cells. Pediatr Transplant. 2007;211:349-53.
  28. Tuby H, Maltz L, Oron U. Low-level laser irradiation (LLLI) promotes proliferation of mesenchymal and cardiac stem cells in culture. Lasers Surg Med. 2007;39(4):373-8. https://doi.org/10.1002/lsm.20492
  29. Abramovitch-Gottlib L, Gross T, Naveh D, Geresh S, Rosenwaks S, Bar I, et al. Low level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix. Lasers Med Sci. 2005;20:138-46. https://doi.org/10.1007/s10103-005-0355-9
  30. Friedmann H, Lubart R, Laulicht I. A possible explanation of laser-induced stimulation and damage of cell cultures. J Photochem Photobiol B. 1991;11:87-91. https://doi.org/10.1016/1011-1344(91)80271-I
  31. Amat A, Rigau J, Waynant RW, Ilev IK, Tomas J, Anders JJ. Modification of the intrinsic fluorescence and the biochemical behavior of ATP after irradiation with visible and near-infrared laser light. J Photochem Photobiol B. 2005;81:26-32. https://doi.org/10.1016/j.jphotobiol.2005.05.012
  32. Mochizuki-Oda N, Kataoka Y, Cui Y, Yamada H, Heya M, Awazu K. Effects of near-infra-red laser irradiation on adenosine triphosphate and adenosine diphosphate contents of rat brain tissue. Neurosci Lett. 2005;323:207-10.

피인용 문헌

  1. Stem Cells in Bone Regeneration vol.12, pp.5, 2016, https://doi.org/10.1007/s12015-016-9665-5
  2. Biomimetic Porous PLGA Scaffolds Incorporating Decellularized Extracellular Matrix for Kidney Tissue Regeneration vol.8, pp.33, 2016, https://doi.org/10.1021/acsami.6b03771
  3. Effect of Drug Carrier Melting Points on Drug Release of Dexamethasone-Loaded Microspheres vol.14, pp.6, 2016, https://doi.org/10.1007/s13770-017-0077-7
  4. Functionalizing PLGA and PLGA Derivatives for Drug Delivery and Tissue Regeneration Applications vol.7, pp.1, 2016, https://doi.org/10.1002/adhm.201701035
  5. Poly(lactic-co-glycolic acid): The most ardent and flexible candidate in biomedicine! vol.67, pp.17, 2016, https://doi.org/10.1080/00914037.2017.1405350
  6. Effects of protein-coated nanofibers on conformation of gingival fibroblast spheroids: potential utility for connective tissue regeneration vol.13, pp.2, 2018, https://doi.org/10.1088/1748-605x/aa91d9
  7. Current advances for bone regeneration based on tissue engineering strategies vol.13, pp.2, 2016, https://doi.org/10.1007/s11684-018-0629-9
  8. Influence of electromagnetic waves, with maxima in the green or red range, on the morphofunctional properties of multipotent stem cells vol.45, pp.4, 2019, https://doi.org/10.1007/s10867-019-09531-7